C. Muehlmann, N. Piccolotto, S. De Iaco and K. Nordhausen. SpaceTimeBSS: Blind Source Separation for Multivariate Spatio-Temporal Data, R package, 2022. https://CRAN.R-project.org/package=SpaceTimeBSS
C. Muehlmann, K. Facevicova, A. Gardlo, H. Janeckova and K. Nordhausen. Independent Component Analysis for Compositional Data. In A. Daouia and A. Ruiz-Gazen, editors, Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan, pages 525–545. Springer, Cham, 2021. doi: 10.1007/978-3-030-73249-3_27.
C. Muehlmann, H. Oja, and K. Nordhausen. Sliced Inverse Regression for Spatial Data. In E. Bura and B. Li, editors, Festschrift in Honor of R. Dennis Cook: Fifty Years of Contribution to Statistical Science, pages 87–107. Springer, Cham, 2021. doi: 10.1007/978-3-030-69009-0_5.
C. Muehlmann, P. Filzmoser, and K. Nordhausen. Local Difference Matrices for Spatial Blind Source Separation. To appear in Proceedings of the 3rd Conference of the Arabian Journal of Geosciences, 2020.
Submitted articles:
C. Muehlmann, N. Piccolotto, C. Capello, M. Bögl, P. Filzmoser, S. Miksch, and K. Nordhausen (2022): Visual Interactive Parameter Selection for Temporal Blind Source Separation.
N. Piccolotto, M. Bögl, C. Muehlmann, K. Nordhausen, P. Filzmoser, J. Schmidt, and S. Miksch (2022): Visual sensitivity analysis beyond multivariate parameters.
M. Sipila, C. Muehlmann, K. Nordhausen and S. Taskinen (2022): Robust second-order stationary spatial blind source separation using generalized sign matrices.
F. Bachoc, C. Muehlmann, K. Nordhausen and J. Virta (2022): Large-Sample Properties of Non-Stationary Source Separation for Gaussian Signals.
C. Muehlmann. Advances in blind source separation for spatial data. Doctoral thesis. Institute of Statistics and Mathematical Methods in Economics, TU Wien, 2021.
C. Muehlmann. Pulse-Shape Discrimination with Deep Learning in CRESST. Institute of High Energy Physics, Austrian Academy of Sciences, 2019.