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Introduction

Outliers and robustness

• Many multivariate data sets contain outliers

Outlier...s

Hawkins, D. (1980) An outlier is an observation that deviates so

much from other observations as to arose suspicion that it was

generated by different mechanism

• More often we find outliers in large data sets (many observations

or variables).

• Often they do not show up by simple visual inspection.
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Introduction

Outliers and Robustness

Outlier detection and Robust estimation are closely related

1. Robust estimation: find an estimate which is not influenced by

the presence of outliers in the sample. Robustness is ”...

insensitivity against small deviations from the assumptions”

(Huber, 1987)

2. Outlier detection: find all outliers, which could distort the

estimate

• If we have a solution to the first problem we can identify the

outliers using robust residuals or distances

• If we know the outliers we can remove or downweight them and

use classical estimation methods

• It depends on the particular research, on which problem to set

the focus
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Introduction

Multivariate Location and Scatter

• The usual multivariate analysis techniques are based on empirical
means and covariance/correlation matrices and least squares
fitting.

I Location: coordinate-wise mean
I Scatter: covariance matrix

I Variances of the variables on the diagonal
I Covariance of two variables as off-diagonal elements

I Optimally estimated by the sample mean and sample covariance

matrix at any multivariate normal model
I Essential to a number of multivariate data analysis methods

• All these are extremely sensitive to outlying observations.
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Introduction

MCD Estimator

MCD-Estimator - Minimum Covariance Determinant (Rousseeuw,

1985)

• Find the subset of h observations out of n whose classical

covariance matrix has a smallest determinant

• The MCD location estimator T is defined by the mean of that

subset and the MCD scatter estimator C is a multiple of its

covariance matrix.

• h = (n+p+1)
2 yields maximal breakdown point

• Fast algorithm to compute the MCD - (Rousseeuw and Van

Driessen, 1999)

MVE-Estimator - Minimum Volume Ellipsoid (Rousseeuw, 1985)

- looks for the minimal volume ellipsoid covering at least half of the

points
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Introduction

Example

Brain and body weights for 62 species of land animals (data set

Animals2 from package robustbase)
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Introduction

About the software

1. robustbase 0.93-8: ”Essential“ Robust Statistics. The goal is to

provide tools allowing to analyze data with robust methods. This

includes regression methodology including model selections and

multivariate statistics where we strive to cover the book ”Robust

Statistics, Theory and Methods“ by Maronna, Martin and Yohai;

Wiley 2006.

2. rrcov 1.6-0: An object oriented framework for robust

multivariate analysis providing a solid base of robust methods for

estimation of multivariate location and covariance matrix as well

as reference implementation of some basic robust multivariate

methods like Principal Component Analysis (PCA), Discriminant

analysis (LDA and QDA) and Multivariate tests
Todorov V and Filzmoser P (2009), An Object Oriented Framework for Robust

Multivariate Analysis. Journal of Statistical Software, 32(3), 1–47.

http://www.jstatsoft.org/v32/i03/.
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Classical PCA

Principal component analysis as an exploratory tool

• Nowadays in many disciplines large data sets dominate the

research. In many cases p is very large and even p � n. In order

to interpret such data sets, methods like PCA are required to

reduce their dimensionality without losing too much information.

• Many techniques exists that provide such service, but PCA is one

of the oldest (Pearson (1901) and Hotelling (1933)) and most

widely used.

• PCA is used in many different disciplines, many times reinvented,
known under many different names:

I Empirical orthogonal functions (EOF) in meteorology and

climatology
I Karhunen-Loeve Transform in digital signal processing
I Proper orthogonal decomposition (POD) in fluid physics
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Classical PCA

Principal component analysis as an exploratory tool

• Principal component analysis (PCA), as an exploratory data

analysis tool, has the purpose to describe the information

contained in a set of correlated variables X1,X2, . . . ,Xp in terms

of a new set of uncorrelated variables Z1,Z2, . . . ,Zp.

• These input variables define p n-dimensional vectors or,

equivalently, an n × p data matrix X = {x1, x2, . . . , xn}, whose

i-th row is the vector (observation) xi with xi ∈ Rp.

• We assume that the input variables are continuous.
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Classical PCA

Classical PCA

• Find a k-dimensional subspace of Rp (with k ≤ min(n, p)) such

that the projection of the data on this subspace contains most of

the information of the original p-dimensional data.

• ”Most of the information“ here means that the projection of the

data retains as much of the variance as possible.

• We thus search for a center µ̂ and a loading matrix Pp,k of size

p × k, such that the k-dimensional scores

ti = P>(xi − µ̂), i = 1, . . . , n

are most informative (maximize the retained variance).
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Classical PCA

Classical PCA

• Thus, PCA searches the directions of maximum variability of the

data.

• To compute the loading matrix

Pp,k =
[
p1,p2, . . . ,pk

]
the first column is chosen as

p1 = arg max
||p||=1

VAR(p>(x1 − x̄),p>(x2 − x̄), . . .p>(xn − x̄))

• All following columns are chosen as

pj+1 = arg max
||p||=1,p⊥p1,...,p⊥pj

VAR(p>(x1 − x̄),p>(x2 − x̄), . . .p>(xn − x̄))
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Classical PCA

Classical PCA

• This is a maximization problem.

• The solution of this maximization problem yields the loading

matrix as the matrix containing the k dominant eigenvectors of

the covariance matrix Sn of the data points.

• In particular, the spectral decomposition of Sn yields

Sn = PLP>

• Here
I P is the p × p orthogonal matrix containing all p eigenvectors of

Sn

I L is the the diagonal matrix with the p eigenvalues l1, . . . , lp in

decreasing order.

Todorov Robust Principal Component and Discriminant Analysisin R20 September 2021 15 / 112



Classical PCA

Classical PCA

1. The classical PCA loading matrix is the matrix Pp,k which

contains the first k columns of P.

2. The eigenvalues lj equal

lj = VAR(p>j (x1 − x̄),p>j (x2 − x̄), . . .p>j (xn − x̄))

3. The proportion of variance explained:∑k
i=1 λi∑p
i=1 λi

=

∑k
i=1 λi
tr(S)

4. PCA scores Tn,k (the columns of T are the principal

components):

Tn,k = (X− 1x̄>)Pp,k
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Classical PCA

Example

PCA is centering plus rotation (the axes will line up with the
directions of highest variance.)
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Classical PCA

Choosing the number of components

• Retain the first k components which explain a large proportion of

the total variation, say, more than 80%.∑k
i=1 li∑p
i=1 li

>= 0.8

• Examine a scree plot – a plot of the eigenvalues (component

variances) versus the component number. The idea is to look for

an ”elbow“ which corresponds to the point after which the

eigenvalues decrease more slowly.

• The PREdicted Sum of Squares (PRESS) statistic measures the

predictive ability of PCA.

• Many more ... see Jolliffe (1986) for an overview.
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Classical PCA

Standardization and equivariance

• If the variance of the original variables differs a lot between

variables, it is recommended to first standardize the variables –

otherwise the first principal components will be dominated by the

variables with largest variance.

• When the variables are standardized by dividing them by their

standard deviation, classical PCA comes down to decomposing

the correlation matrix of the data, instead of the covariance

matrix.

• In case of a robust PCA method, we will standardize the variables

by dividing them by the MAD or another robust scale estimator.

Todorov Robust Principal Component and Discriminant Analysisin R20 September 2021 19 / 112



Classical PCA

Standardization and equivariance

• PCA is sensitive to standardization of the variables and thus it is

NOT affine equivariant.

• PCA is however orthogonally equivariant: when the data are

rotated or reflected, the center and the principal components are

rotated/reflected accordingly.

• This means that any robust PCA method only needs to be

orthogonally equivariant which allows, for example, to use the

L1-median as robust estimate of the center.
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Classical PCA

Biplots

• The biplot (Gabriel, 1971) is a graphical method for

simultaneously displaying the variables and observations in a

multivariate data matrix.

• The PCA biplot displays the component scores and the variable

loadings obtained by PCA in two (or three) dimensions.
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Classical PCA

Biplots

> pc <- PcaClassic(iris[, 1:4])
> biplot(pc, scale=0, col=list(as.integer(iris$Species)+2, "red"))
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Classical PCA

Example: Why do we need robust PCA

> pca.scoreplot(PcaClassic(hbk))

> pca.scoreplot(PcaCov(hbk))
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Classical PCA

PCA in R

• prcomp() (SVD) and princomp() (eigendecomposition) in base

R

• Many others (some of):
I PCA() in package FactoMineR
I dudi.pca() in package ade4
I acp() in package amap
I principal_components() in package anomalyDetection

• (Robust) PCA functions in package rrcov
I PcaClassic()
I PcaCov(), PcaHubert(), PcaLocantore(), PcaGrid(),

PcaProj()
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Classical PCA

Let us try it now...

Let us try it now...

Skull measurements on Rocky Mountain and Arctic wolves (Canis Lupus L.)

Morrison (1990) pp. 283–299

library(rrcov); data(wolves)
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Outliers in PCA

Outliers in PCA

• In general, outliers are observations which are distant, with

respect to some distance measure, from the bulk of the data, we

can say, from the center of the data.

• With respect to an estimated PCA model we can consider two
aspects, when defining which observations are outlying:

I Outlying relative to the PCA subspace and
I Outlying within the PCA subspace.

• Thus, for identifying observations as outlying, we need to define
two types of distances:

I (a) orthogonal distances relative to the PCA subspace and
I (b) score distances within the PCA subspace.
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Outliers in PCA

Orthogonal distances

• For a given data matrix Xn,p any PCA method will produce k

(robust) principal components collected in a loadings matrix

Pp,k , (robust) center µ̂, and a diagonal matrix of eigenvalues

Lk,k . The robust scores are ti = Pt(x− µ), i = 1, . . . , n

• The orthogonal projection of each observation xi on the PCA

subspace is

x̂i = µ̂ + Pp,kti = µ̂ + Pp,k(P>)k,p(xi − µ̂)

• Then the orthogonal distances of each observation to the

subspace spanned by the first k principal components are defined

by:

ODi ,k = ||xi − x̂i || = ||xi − µi − Pp,kti || , i = 1, . . . , n
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Outliers in PCA

Score distances

• To define outliers within the PCA subspace we look for

observations whose projections are outliers in the subspace. We

can measure this by computing a robust distance in the

k-dimensional PCA subspace. This distance only uses the scores,

hence it is called the score distance.

• Since the scores are centered, and their variability is estimated by

the eigenvalues contained in the Lk,k matrix, the score distances

are given by:

SDi ,k =
√

t>i L−1
k,kti =

√√√√ k∑
j=1

t2
ij

lj
, i = 1, . . . , n

where lj are the eigenvalues
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Outliers in PCA

The Outlier map

• Thus, an outlier in the context of PCA is characterized by the
following:

I Lies far from the subspace spanned by the first k eigenvectors

(large orthogonal distance) and/or
I The projected observation lies far from the bulk of the data within

this space (large score distance)

• Using these two distances, four types of observations can be
defined:

I regular observations with small orthogonal and small score

distance
I bad leverage points with large orthogonal and large score distance
I good leverage points with large score distance and small

orthogonal distance and
I orthogonal outliers with large orthogonal distance and small score

distance
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Outliers in PCA

The Outlier map

• To illustrate this, let’s generate 3-dimensional observations which lie essentially on a

plane. Then we replace the first 6 observations by different types of outliers.
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Outliers in PCA

The Outlier map

• The outlier map (Hubert et al, 2005) highlights the outliers on a

plot and classifies them in these three types.

• It plots the orthogonal distances versus the score distances.

• For each type of distance, cut-off values are available to flag

outliers (Hubert et al, 2005).

• Lines (one horizontal and one vertical) are drawn to distinguish

between observations with a small and a large orthogonal

distances, and between a small and a large score distances.

• The outlier map is defined only if the number of selected

principal components k is smaller than the rank of the matrix -

because if k = p the orthogonal distances cannot be computed.

In such case we can look only at a plot of the score distances.
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Outliers in PCA

The Outlier map

• The outlier map of the generated data:
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Outliers in PCA

The Outlier map in R

> library(rrcov)
> data(hbk)
> pc <- PcaClassic(hbk, k=2)
> plot(pc, id.n.sd=4, off=0.05, pch=16, col=c(rep("red", 14), rep("blue", 76)))
> ## The 14 observations shown in red are known to be outliers, however the classical PCA
> ## identifies only four of them
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Outliers in PCA

Score distance plot in R

> library(rrcov)
> data(hbk)
> pc <- PcaClassic(hbk) # k=4 (default)
> plot(pc, id.n.sd=4, off=0.05, pch=16, col=c(rep("red", 14), rep("blue", 76)))
> ## The 14 observations shown in red are known to be outliers, however the classical PCA
> ## identifies only four of them
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Outliers in PCA

Cutoff values for the score and orthogonal distances

• In order to distinguish the observations with small and large

score distance and small and large orthogonal distance we need

cutoff values for these distances.

• Cutoff for the score distance:

ch =
√
χ2
k,0.975

• Cutoff for the orthogonal distances:

cν = (µ̂+ σ̂z0.975)3/2 where z0.975 is the 97.5% quantile of the

standard normal distribution. The parameters of the normal

distribution can be estimated by the median and MAD of the

values OD
2/3
i (or by applying the univariate MCD to these

values).
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Outliers in PCA

The PCA object

> library(rrcov)
> data(hbk)
> pc <- PcaClassic(hbk, 2)
> head(pc$od) # orthogonal distances

1 2 3 4 5 6
0.5770588 1.0244341 0.5957763 0.7301206 0.2020685 0.9610542

> head(pc$sd) # score distances

1 2 3 4 5 6
2.395925 2.460375 2.641565 2.395392 2.509341 2.478453

> head(pc$flag) # outlier identification

1 2 3 4 5 6
TRUE TRUE TRUE TRUE TRUE TRUE

> pc$cutoff.od # OD cutoff

[1] 3.070344

> pc$cutoff.sd # SD cutoff

[1] 2.716203
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Plug-in PCA

Plug-in PCA

• The easiest way to robustify the PCA is us robust estimates of

location and covariance matrix instead of the sample ones.

• Concretely:
I Replace the sample covariance matrix Sn by a robust covariance

estimate Σ̂, e.g. the MCD, multivariate S- or MM-estimator.
I The robust center corresponds to the robust location estimate

associated with Σ̂.
I The k robust eigenvalues then correspond to the k largest

eigenvalues of Σ̂.
I Take the corresponding eigenvectors.

• This approach can only be used when n > 2p hence not for

high-dimensional data.
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Plug-in PCA

Plug-in PCA: Example 1

Brain and body weights for 62 species of land animals (data set Animals2 from package

robustbase) – n = 62, p = 2.

• The red line is the first eigenvector of the MCD covariance matrix – corresponds to

the main axis of the tolerance ellipse.

• The dotted blue line is the first classical eigenvector.
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Plug-in PCA

Plug-in PCA: Example 2

> library(rrcov)
> data(hbk)
> ## ?hbk

• hbk {robustbase}
• Hawkins, Bradu, Kass’s artificial data

• Description: Artificial Data Set generated by Hawkins, Bradu, and Kass (1984).

The data set consists of 75 observations in four dimensions (one response and three

explanatory variables). It provides a good example of the masking effect. The first

14 observations are outliers, created in two groups: 1-10 and 11-14. Only

observations 12, 13 and 14 appear as outliers when using classical methods, but can

be easily unmasked using robust distances computed by, e.g., MCD - CovMcd().

• Source:Hawkins, D.M., Bradu, D., and Kass, G.V. (1984) Location of several

outliers in multiple regression data using elemental sets. Technometrics 26, 197–208
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Plug-in PCA

Plug-in PCA: Example 2

Screeplot of the classical and robust (MCD) PCA for the HBK data set.

• The first classical eigenvector already explains 96.5% of the total classical variance.

• The robust analysis explains 63% of the total variability when k = 2 and 93% when

k = 3.
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Plug-in PCA

Plug-in PCA: Example 2

If we select all k = 4 principal components, we can look at the

resulting score distances only:
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Plug-in PCA

Plug-in PCA: Example 2

Scoreplot: For the classical PCA always t̂ = 0, but here (0, 0) is not

at the center of the regular observations.
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Plug-in PCA

Plug-in PCA: Example 2

Outlier map: If we select k = 2 we can also look at the orthogonal

distances
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Plug-in PCA

Plug-in PCA: Example 2

Summary of the Ranalysis with plug-in robust PCA

> library(rrcov)
> data(hbk)
> pca <- PcaClassic(hbk) # Classical PCA
> rpc1 <- PcaCov(hbk) # Uses MCD with alpha=0.5 (default)
> rpc2 <- PcaCov(hbk, cov.control=CovControlMMest())
> screeplot(rpc1)
> pca.scoreplot(rpc1)
> plot(rpc1) # outlier map
> getLoadings(rpc1)
> getEigenvalues(rpc1)
> getScores(rpc1)
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Projection pursuit PCA

Projection pursuit PCA

• Let us again have an n × p data matrix X = {x1, x2, . . . , xn},
whose i-th row is the vector (observation) xi with xi ∈ Rp.

• We again assume that the input variables are continuous.

• Further, we assume that the data are centered, e.g.

X = (X− 1µ̂>)

• The L1 median can be used to robustly center the data.

• Furthermore, the input data matrix can be scaled, if necessary.
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Projection pursuit PCA

Projection pursuit PCA

• For the centered (and possibly scaled) data matrix, find linear

combinations tj that result from a projection of the centered

data on a direction pj :

tj = Xpj such that

pj = arg max
p

Var(Xp) subject to

‖pj‖ = 1 and Cov(Xpj ,Xpl) = 0 for l < j and j = 1, . . . , k with

k ≤ min (n, p).
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Projection pursuit PCA

Projection pursuit PCA

Var is a variance measure:

• Classical case: Var is the empirical variance

⇒ p1, . . . ,pk correspond to the first k (dominant) eigenvectors

of the sample covariance matrix.

⇒ l1, . . . , lk correspond to the first k eigenvalues of the sample

covariance matrix.

• Robust case: Var is squared robust scale estimator

⇒ p1, . . . ,pk are the directions of the first k robust PC

⇒ The k robust ”eigenvalues“ lj then correspond to the robust

variance of the data projected onto p1, . . . ,pk :

lj = VAR(p>j x1,p
>
j x2, . . .p

>
j xn)
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Projection pursuit PCA

Projection pursuit PCA

Robust scale estimators:

Given n univariate observations y1, y2, . . . , yn.

• Median Absolute Deviation:

Median
1≤i≤n

|yi −Median(y1, y2, . . . , yn)|

• Qn-scale:

First quartile of all distances between pairs of points |yi − yj |
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Projection pursuit PCA

Advantages of the PP approach

• The projection pursuit (PP) approach was developed by Li and

Chen (1985), Hubert et al. (2002), and Croux and Ruiz-Gazen

(2005), Croux et al. (2010)

• It can be used when p > n as it projects the data on lines.

• It is performed sequentially and can be stopped whenever

sufficiently many components are obtained.

• The solutions are nested: any j-dimensional PCA subspace is a

subspace of all higher-dimensional PCA subspaces found later.
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Projection pursuit PCA

Let us try it now...

Let us try it now...

• The bus data set (Hettich and Bay, 1999) corresponds to a study in automatic

vehicle recognition (see Maronna et al. 2006, page 213, Example 6.3)). This data

set from the Turing Institute, Glasgow, Scotland, contains measures of shape

features extracted from vehicle silhouettes. The images were acquired by a camera

looking downward at the model vehicle from a fixed angle of elevation.

• Each of the 218 rows corresponds to a view of a bus silhouette, and contains 18

attributes of the image.
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Projection pursuit PCA

Projection pursuit PCA: Example

• One variable has zero MAD and is removed, hence p = 17.

• We standardize the data, and apply the projection-based PCA

with Qn as scale estimator. Then 92% of the variability is

explained by k = 5 components.

• NOTE: Instead of standardizing by dividing by a robust scale, we

can call the Pca function with argument scale=mad or

scale=qn.
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Projection pursuit PCA

Projection pursuit PCA: Example

> data(bus)
> bus <- as.matrix(bus)
> ## calculate MADN for each variable
> xmad <- apply(bus, 2, mad)
> cat("\nMin, Max of MADN: ", min(xmad), max(xmad), "\n")

Min, Max of MADN: 0 34.8411

> ## MADN vary between 0 (for variable 9) and 34. Therefore exclude
> ## variable 9 and divide the remaining variables by their MADNs.
> bus1 <- bus[, -9]
> madbus <- apply(bus1, 2, mad)
> bus2 <- sweep(bus1, 2, madbus, "/", check.margin = FALSE)
> rpc <- PcaGrid(bus2, method="qn")
> ev <- getEigenvalues(rpc)
> cumsum(ev)/sum(ev)

[1] 0.4418105 0.6475868 0.7938430 0.8635211 0.9241256 0.9544322 0.9692368
[8] 0.9781212 0.9841466 0.9891732 0.9925678 0.9955517 0.9969762 0.9982615

[15] 0.9994451 0.9997683 1.0000000
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Projection pursuit PCA

Projection pursuit PCA: Example

> pc <- PcaClassic(bus2, k=5)
> plot(pc)

> rpc <- PcaGrid(bus2, method="qn", k=5)
> plot(rpc)
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Projection pursuit PCA

Projection pursuit PCA: Example

• Compare the loadings: The first classical component is highly

influenced by the 7-th and 11-th variable. The second classical

component is influenced by the 6-th variable. These three

variables all have many outliers.
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Spherical PCA

Spherical PCA

• Introduced by Locantore et al. (1999).

• See Rowsseeuw and Raymaekers for recent extensions

• Center by the L1-median, denoted as µ̂.

• Project the data on the unit sphere with center µ̂.

• The robust eigenvectors are computed as the dominant

eigenvectors of the covariance matrix of these projected data

points, i.e. the eigenvectors of the sign covariance matrix.

Σ̂ =
1

n − 1

n∑
i=1

(xi − µ̂)

||xi − µ̂||
(xi − µ̂)>

||xi − µ̂||

with the largest eigenvalues.

• These eigenvalues are not consistent, but they can be replaced

by a robust scale (e.g. the squared MAD) of the scores.
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Spherical PCA

Spherical PCA: Example

> sphpca <- PcaLocantore(bus2, k=5)
> plot(sphpca, main="Spherical PCA")
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ROBPCA: Projection pursuit and the MCD
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ROBPCA: Projection pursuit and the MCD

ROBPCA:Projection pursuit and MCD

• The PCA method ROBPCA proposed by Hubert et al. (2005)

tries to combine the advantages of both approaches—the PCA

based on a robust covariance matrix and PCA based on

projection pursuit.

• The projection pursuit part is used for the initial dimension

reduction. The MCD estimator is then applied to this

lower-dimensional data space.

• The combined approach should yield more accurate estimates

than the raw PP algorithm.
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ROBPCA: Projection pursuit and the MCD

Main steps of ROBPCA: 1

1. The data are preprocessed by reducing their data space to the

subspace spanned by the n observations. This is done by singular

value decomposition of the input data matrix Xn,p. As a result

the data are represented in a space whose dimension is rank(X ),

being at most n − 1 without loss of information.
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ROBPCA: Projection pursuit and the MCD

Main steps of ROBPCA: 2

2. A measure of outlyingness is computed for each data point and
the h < n ”least outlying“ points are found (n/2 < h < n).

I The measure used is similar to the Stahel-Donoho outlyingness

(SDO) which is orthogonally invariant.

SDO(xi ) = max
v∈B

|x>i v − µ̂mcd(x>j v)|
ŝmcd(x>j v)

with µ̂mcd and ŝmcd the univariate MCD estimators of location

and scale.
I The set B contains 250 directions through two data points,

randomly drawn from the data.
I Let Σ̂h be the covariance matrix of the h points with smallest

outlyingness.
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ROBPCA: Projection pursuit and the MCD

Main steps of ROBPCA: 3

3. The data points are then projected on the k-dimensional

subspace spanned by the k eigenvectors corresponding to the

largest k eigenvalues of the matrix Σ̂h. The location and scatter

of the projected data are computed using the reweighted MCD

estimator, and the eigenvectors of this scatter matrix yield the

robust principal components.
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Example 1

> pcaHubert <- PcaHubert(bus2, k=5, mcd=FALSE, alpha=0.5)
> plot(pcaHubert, id.n.od=5, off=0.04, main="ROBPCA")
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

• A data set originating from 180 16th-17th century archeological

glass vessels (Janssens et al. 1998).

• There are 750 characteristics for each vessel, coming from an

analysis by an electron-probe X-ray micro-analysis. The data set

includes four different materials comprising the vessels, with the

larger group being of 145 observations.

• It is known from other studies on this data set (Sernels et al.

2005; Filzmoser et al. 2008; Filzmoser and Todorov 2011;2014)

that these 145 observations should form two groups, because

during the measurement process the detector efficiency has been

changed.
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

• This example is also considered in detail in Hubert et al. (2005)

illustrating the newly proposed ROBPCA algorithm.

• The data are available in the package rospca as the data set

Glass. It is a data frame with 180 observations and 750

variables. For this example we will use only the first 500

wavelengths (variables).

• Instead of working with the raw data, we first robustly center the

spectra by subtracting the univariate MCD location estimator

from each wavelength. Doing so allow us to observe more of the

variability that is present in the data.
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

> library(rospca)
> data(Glass)
> ## We define a function to calculate the univariate MCD using the
> ## internal rrcov function unimcd() and apply it to the data set
> ## using the robustbase (undocumented) function doScale(). We set
> ## the scale parameter to NULL - in order to do no scaling note
> ## that in base::scale() we have scale=FALSE for this purpose.
>
> umcd_center <- function(y)
+ rrcov:::unimcd(y, quan=h.alpha.n(0.5, length(y), 1))$tmcd
> X <- doScale(Glass, center=umcd_center, scale=NULL)$x
> X <- X[, 1:500]
> (n <- nrow(X))

[1] 180

> (p <- ncol(X))

[1] 500
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

• All observations, robustly centered
> matplot(t(X), type="l", lty=1)
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

• Start by computing the classical PCA. Three components yield 99% explained

variance.

• The outlier map shows only mild orthogonal outliers and good leverage points.

> pc <- PcaClassic(X, k=3, scale=FALSE)
> plot(pc, id.n.sd=0, id.n.od=0)
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

• The score plot shows the observations falling into several groups, but almost all are

encompassed by the 0.975 tolerance ellipse.

> pca.scoreplot(pc)
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

• The first three loadings vectors of classical PCA.

• The second and third peaks are mixed up.
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

• The first three loadings vectors of the robust PCA.

• ROBPCA keeps the peaks more separate.

> rpc <- PcaHubert(X, k=3, scale=FALSE, alpha=0.7)
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

• Outlier map from ROBPCA.

• The bad leverage points are easily seen.
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

• What has caused the outliers in the glass data?
I The window of the detector system was cleaned before the last 38

spectra were measured and as a result less radiation was

absorbed, hence more was detected.
I Observations 57–63 and 74–76 are samples with a large

concentration of calcium.
I Observations 22, 23 and 30 are borderline cases (with a larger

concentration of phosphor).
I Observation 180 is also a borderline case.
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

• Regular observations.

• These clearly have lower measurements at channels 160–175 than did samples

143–179 (next slide).
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

• Bad leverage points 143–179.
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

• Bad leverage points 57–63 and 74–76.
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ROBPCA: Projection pursuit and the MCD

ROBPCA: Glass spectra example

• Orthogonal outliers.
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ROBPCA: Projection pursuit and the MCD

Exercise: Fruit data

Let us try it... your turn now ...

• The fruit data set (originally collected by Colin Greensill, Central Queensland

University, Rockhampton, Australia) contains the spectra of three different cultivars

of the same fruit (cantaloupe – Cucumismelo L. Cantaloupensis). Parts of it were

analyzed in Hubert and Van Driessen (2004), Hubert et al. (2008), Vranckx et al.

(2021)

• The cultivars (named D, M and HA) have sizes 490, 106 and 500, and all spectra

were measured in 256 wavelengths.

• The dataset thus contains 1096 observations and 256 variables.

Todorov Robust Principal Component and Discriminant Analysisin R20 September 2021 81 / 112



ROBPCA: Projection pursuit and the MCD

Exercise: Fruit data

• The data set is available in the development version of the package rrcov available

at GitHub: https://github.com/valentint/rrcov

> ## install.packages("remotes")
> ## remotes::install_github("valentint/rrcov")
> data(fruit)
> dim(fruit)

[1] 1096 257

> table(fruit$cultivar)

D HA M
490 500 106

• Apply classical PCA to the whole data set and to each of the cultivars. Compare

the outlier maps.

• Apply robust PCA to the whole data set and to each of the cultivars (which robust

PCA methods can you use?). Compare the outlier maps.

• How many components will you retain?
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Other PCA issues and methods Robust PCA for skewed data

Adjusted boxplot

• The boxplot is a very popular graphical tool to visualize the

distribution of continuous unimodal data

• When the data are skewed, usually many points exceed the

whiskers and are often erroneously declared as outliers.

• An adjustment of the boxplot that includes a robust measure of

skewness in the determination of the whiskers (Hubert and

Vandervieren, 2006)

• This results in a more accurate representation of the data and of

possible outliers.

• Function adjbox() in package robustbase.
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Other PCA issues and methods Robust PCA for skewed data

Adjusted boxplot

Example: Dates of Coal Mining Disasters, available in package boot

> ### Hubert and Vandervieren (2006), p. 10, Fig. 4.
> data(coal, package = "boot")
> coaldiff <- diff(coal$date)
> hist(coaldiff)

Histogram of coaldiff
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Other PCA issues and methods Robust PCA for skewed data

Adjusted boxplot

> op <- par(mfrow = c(1,2))
> boxplot(coaldiff, main = "Original Boxplot")
> adjbox(coaldiff, main = "Adjusted Boxplot")
> par(op)
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Todorov Robust Principal Component and Discriminant Analysisin R20 September 2021 86 / 112



Other PCA issues and methods Robust PCA for skewed data

Adjusted outlyingness (AO)

• The Stahel-Donoho outlyingness (SDO) used in ROBPCA

assumes symmetry!

• Too many observations might be marked as outliers

• Adjusted outlyingness: For univariate data with median M, the

adjusted outlyingness is defined as:

AOi =
|xi −M|

(w2 −M)I [xi > M] + (M − w1)I [xi < M]

• where with w1 and w2 are the lower and upper whiskers of the

adjusted boxplot.

• Skewness is thus used to estimate the scale differently on both

sides of the median.
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Other PCA issues and methods Robust PCA for skewed data

Adjusted outlyingness (AO)

• For multivariate data, the projection pursuit idea can again be

used (Brys et al. 2005; Hubert and Van der Veeken 2008):

AOi = sup
a∈Rp

AO(a>xi ,Xna)

• In practice: consider 250p directions, generated as the direction

perpendicular to the subspace spanned by p observations,

randomly drawn from the data set.
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Other PCA issues and methods Robust PCA for skewed data

PCA for skewed data: Example

> library(rrcov)
> data(machines)
> rownames(machines) <- NULL # names are too long
> ## ?machines

• machines {rrcov}
• Computer Hardware data

• Description: A data set containing relative CPU performance data of 209 machines

on 8 variables.

• Source: UCI Archive
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Other PCA issues and methods Robust PCA for skewed data

PCA for skewed data: Example
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Other PCA issues and methods Sparse PCA

Sparse PCA: Example

Data set yarn: 28 near-infrared spectra (NIR) of PET yarns, measured at 268 wavelengths

as predictors, and density as response (density)—Swierenga et al. (1999), package pls.
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Other PCA issues and methods Sparse PCA

Sparse PCA: Example

First two PCA loadings:
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Other PCA issues and methods Sparse PCA

Sparse PCA: Example

First two sparse PCA loadings:
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Other PCA issues and methods Sparse PCA

Sparse and robust PCA - Croux at al. (2012)

... add an L1 penalty in the objective function (see Tibshirani, 1996)

pj = arg max
p

Var(Xp)− λj ‖p‖1

• with the tuning parameter λj :
I Setting λj = 0: unconstrained j-th PCA direction pj ;
I increasing λj : sparsity gains importance compared to (robust)

variance maximization.

• To achieve robustness: replace Var by a robust scale estimator:

Median Absolute Deviation (MAD) or Qn-scale, see Croux et al.

(2005, 2007).

• To solve this optimization problem - use the grid algorithm Croux

et al (2007) available as function PcaGrid() in the R package

rrcov.
Todorov Robust Principal Component and Discriminant Analysisin R20 September 2021 94 / 112



Other PCA issues and methods Sparse PCA

Sparse PCA: Example

> library(mvtnorm) # multivariate data with outliers
> set.seed(6543)
> x <- rbind(rmvnorm(200, rep(0, 6), diag(c(5, rep(1,5)))),
+ rmvnorm( 15, c(0, rep(20, 5)), diag(rep(1, 6))))
> lambda <- c (0.23, 0.34, 0.005) # applying sparse PCA
> SPcaGrid (x, k = 3, lambda = lambda)

Call:
SPcaGrid(x = x, k = 3, lambda = lambda)

Standard deviations:
[1] 2.416348 1.389316 1.348614
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Discriminant analysis

The discriminant analysis

• A data set X = (x1, . . . , xN) of dimension p is split into K

groups, each with nk objects, k = 1, . . . ,K and N =
∑

nk
(training data set).

• The task: Assign new observations (test data set) to one of the

groups

• πk are prior probabilities

• Conditional distributions N(µk,Σk)
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Discriminant analysis

The discriminant analysis

• The (Bayesian) discriminant rule is (quadratic discriminant

analysis):

dk(x) = −1

2
log(|Σk |)−

1

2
(x− µk)TΣ−1

k (x− µk) + log(πk)

• In case of homoscedasticity Σ = Σ1, . . . ,Σk we have (linear

discriminant analysis):

dk(x) = µT
k Σ−1

k x−−1

2
µT
k Σ−1

k µk + log(πk)
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Discriminant analysis

The discriminant analysis: Parameter estimation

• The parameters µk , Σk and Σ are estimated from the sample:
I the sample means x̂k
I the inverse of the sample covariance matrices Σ̂k

I the inverse of the pooled sample covariance matrix

Σ̂ = 1
N−K

∑K
k=1 nkΣk

• Instead of pooling the covariance matrices one can center the

data by subtracting x̂k from the data and then computing the

sample covariance matrix of the centered data

• Robust discriminant analysis is obtained by replacing µk , Σk and

Σ by their robust estimates Tk , Ck and C
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Discriminant analysis

The discriminant analysis: Parameter estimation

• The parameters µk , Σk and Σ are estimated from the sample:
I the sample means x̂k
I the inverse of the sample covariance matrices Σ̂k

I the inverse of the pooled sample covariance matrix

Σ̂ = 1
N−K

∑K
k=1 nkΣk

• Instead of pooling the covariance matrices one can center the

data by subtracting x̂k from the data and then computing the

sample covariance matrix of the centered data

• Robust discriminant analysis is obtained by replacing µk , Σk and

Σ by their robust estimates Tk , Ck and C
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Discriminant analysis

Robust DA Example: Reaven and Miller diabetes data

> library(rrcov)
> data(diabetes)
> ## ?diabetes

• diabetes {rrcov}
• Reaven and Miller diabetes data

• Description: The data set contains five measurements made on 145 non-obese adult

patients classified into three groups.

• Reaven and Miller, following Friedman and Rubin (1967), applied cluster analysis to

the three primary variables and identified three clusters: ”normal”, ”chemical

diabetic”, and ”overt diabetic” subjects.

• The column group contains the classifications of the subjects into these three

groups, obtained by current medical criteria.
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Discriminant analysis

Robust DA Example: diabetes

> dim(diabetes)

[1] 145 6

> head(diabetes)

rw fpg glucose insulin sspg group
1 0.81 80 356 124 55 normal
2 0.95 97 289 117 76 normal
3 0.94 105 319 143 105 normal
4 1.04 90 356 199 108 normal
5 1.00 90 323 240 143 normal
6 0.76 86 381 157 165 normal

> table(diabetes$group)

normal chemical overt
76 36 33
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Discriminant analysis

Robust DA Example: diabetes

> ### Classical LDA
> lda <- LdaClassic(group~insulin+glucose+sspg, data=diabetes)
> (pr <- predict(lda))

Apparent error rate 0.1724

Classification table
Predicted

Actual normal chemical overt
normal 73 3 0
chemical 15 21 0
overt 2 5 26

Confusion matrix
Predicted

Actual normal chemical overt
normal 0.961 0.039 0.000
chemical 0.417 0.583 0.000
overt 0.061 0.152 0.788
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Discriminant analysis

Robust DA Example: diabetes

> ## Robust LDA (using MCD group means and covariance matrix)
> rlda <- Linda(group~insulin+glucose+sspg, data=diabetes)
> (rpr <- predict(rlda))

Apparent error rate 0.1103

Classification table
Predicted

Actual normal chemical overt
normal 73 3 0
chemical 6 30 0
overt 0 7 26

Confusion matrix
Predicted

Actual normal chemical overt
normal 0.961 0.039 0.000
chemical 0.167 0.833 0.000
overt 0.000 0.212 0.788
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Discriminant analysis

Robust DA Example: diabetes

> ## Robust LDA (using OGK group means and covariance matrix)
> rlda.OGK <- Linda(group~insulin+glucose+sspg, data=diabetes,
+ cov.control=CovControlOgk())
> (rpr <- predict(rlda.OGK))

Apparent error rate 0.0966

Classification table
Predicted

Actual normal chemical overt
normal 71 5 0
chemical 2 34 0
overt 0 7 26

Confusion matrix
Predicted

Actual normal chemical overt
normal 0.934 0.066 0.000
chemical 0.056 0.944 0.000
overt 0.000 0.212 0.788
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Discriminant analysis

Robust DA Example: diabetes

> ## Robust QDA with MCD (default)
> rqda <- QdaCov(group~insulin+glucose+sspg, data=diabetes)
> (qpr <- predict(rqda))

Apparent error rate 0.1034

Classification table
Predicted

Actual normal chemical overt
normal 69 7 0
chemical 2 30 4
overt 0 2 31

Confusion matrix
Predicted

Actual normal chemical overt
normal 0.908 0.092 0.000
chemical 0.056 0.833 0.111
overt 0.000 0.061 0.939
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Discriminant analysis

Robust DA Example: diabetes

> ## Outlier map with ROBPCA
> plot(PcaHubert(diabetes[, -ncol(diabetes)]), id.n.od=10)
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Summary and conclusions

Summary and conclusions

• Robust PCA functions in R
I PcaHubert - ROBPCA, (Hubert, Rousseeuw and Vanden

Branden, 2005)
I PcaLocantore - Spherical PCA (Locantore et al., 1999)
I PcaCov - PCA based on a robust covariance matrix
I PcaGrid - (Croux, Filzmoser, Oliveira, 2007)
I PcaProj - (Croux and Ruiz-Gazen, 2005)
I PCA based on robust scales (Maronna, 2005)
I PCA based on generalized sign covariance matrix (Raymaekers

and Rousseeuw, 2019)
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