Robust time series analysis with R

Alexander Dürre

ECARES - European Center for Advanced Research in Economics and Statistics
Université Libre de Bruxelles

Wien, 20th September 2021

Exercises A

- Calculate the ACF of the stock prices of SAP (SAP2.Rdata) robustly and by the empirical ACF. consider the raw prices and the log returns defined by $(\tilde{X}_t)_{t=2,...,n}$ defined by $\tilde{X}_t = \log(X_t) \log(X_{t-1})$.
- Determine the frequency of the guitar string (guitar2.Rdata)! (Which string is played and is it tuned correctly?)
- Smooth the NO2 values robustly and non robustly. Decide for a reasonable period length (and specify it by the freq argument in the ts-object)

Note: install robts (after installing dependencies: robustbase, rrcov, SpatialNP, ICSNP, sscor, quantreg, Itsa) by:

install.packages("robts", repos="http://R-Forge.R-project.org")

A1

```
> load("SAP2.Rdata")
> raw <- SAP[,2]
> logreturn <- diff(log(SAP[,2]))
> acf(raw)
> acf(logreturn)
> acfrob(raw)
> acfrob(logreturn)
```


Empirical ACFs in the forst row, robust ACFs in the second row

- > spectrumg <- spectrumrob(guitar[,2])</pre>
- > index <- which.max(spectrumg\$spec)</pre>
- > spectrumg\$freq[index]*8000

the frequency is 119Hz which is a little to high for an Astring

A3

```
>load("NO2Krefeld.Rdata")
>KrefeldNO2 <- ts(Krefeld[,2],freq=7)
>etsresult <- ets(KrefeldNO2)
>robetsresult <- robets(KrefeldNO2)
>plot(etsresult)
>plot(robetsresult)
```

Decomposition by ETS(M,N,M) method

Non-robust smoothing

Decomposition by ROBETS(A,N,A) method

Robust smoothing

AR(1) with $\pi=0.9$ and one outlier (left) and estimated ACF (right)

AR(1) with $\pi=$ 0.9 and one outlier (left) and estimated ACF (right)

Exercises

- Detect changes in the location and scale of the log returns of the SAP stock prices. If you can detect a change (significance level 0.05), spit the time series in two and try to detect changes there.
- ② Fit an ARMA model to the yearly sunhours of Chemnitz robustly, try also conventional fits of order (1,0),(0,1) an (1,1).

```
> logreturns <- diff(log(SAP[,2]))
> test1 <- huber_cusum(logreturns,fun="HLm")
> test1$p.value
> test1$cp.location
> test2a <- huber_cusum(logreturns[1:2008],fun="HLm")
> test2b <- huber_cusum(logreturns[2009:4984],fun="HLm")
> test2a$p.value
> test2b$p.value
> median(logreturns[1:2008])-median(logreturns[2009:4984])
```

difference is around 0.001!

Log returns of SAP stock prices

Estimated location function

Exercises

Try to predict the number of covid cases in Austria for the next days.

- > armarobM <- armarob(sunhours[,2],arorder=3,maorder=3,
 aic=TRUE,aicpenalty=function(p) return(p*log(length(sunhours))</pre>
- > arma10 <- arma(sunhours[,2],c(1,0))</pre>
- > arma01 <- arma(sunhours[,2],c(0,1))</pre>
- > arma11 <- arma(sunhours[,2],c(1,1))</pre>

only robust ARMA model [AR(1)] and MA(1) are reasonable

model	μ	π	θ
robust	1603	0.51	0
non robust $AR(1)$	1197		
non robust $ARMA(1,1)$	1196	0.78	-0.58
non robust $MA(1)$	1611	0	0.23

Parameter estimations

Robust ACF of the residuals

Model analysis

Residuals over time

C

```
> load("Covid.Rdata")
> covidtimes <- ts(Covid[,5],freq=7)
> robModel <- robets(covidtimes)
> predict(robModel)
```

Decomposition by ROBETS(A,N,A) method

Robustly smoothed covid data

Data sources:

- https://open.data.dwd.de
- https://finance.yahoo.com
- https://covid19-dashboard.ages.at
- https://www.lanuv.nrw.de