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Exercises A

1 Calculate the ACF of the stock prices of SAP (SAP2.Rdata)
robustly and by the empirical ACF. consider the raw prices and
the log returns defined by (X̃t)t=2,...,n defined by
X̃t = log(Xt) − log(Xt−1)).

2 Determine the frequency of the guitar string (guitar2.Rdata)!
(Which string is played and is it tuned correctly?)

3 Smooth the NO2 values robustly and non robustly. Decide for a
reasonable period length (and specify it by the freq argument
in the ts-object)

Note: install robts (after installing dependencies: robustbase, rrcov,
SpatialNP, ICSNP, sscor, quantreg, ltsa) by:

install.packages("robts", repos="http://R-Forge.R-project.org")
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A1

> load("SAP2.Rdata")
> raw <- SAP[,2]
> logreturn <- diff(log(SAP[,2]))
> acf(raw)
> acf(logreturn)
> acfrob(raw)
> acfrob(logreturn)
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A2

> spectrumg <- spectrumrob(guitar[,2])
> index <- which.max(spectrumg$spec)
> spectrumg$freq[index]*8000

the frequency is 119Hz which is a little to high for an Astring
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A3

>load("NO2Krefeld.Rdata")
>KrefeldNO2 <- ts(Krefeld[,2],freq=7)
>etsresult <- ets(KrefeldNO2)
>robetsresult <- robets(KrefeldNO2)
>plot(etsresult)
>plot(robetsresult)
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A4
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A4

AR(1) with π = 0.9 and one outlier (left) and estimated ACF (right)
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Exercises

1 Detect changes in the location and scale of the log returns of
the SAP stock prices. If you can detect a change (significance
level 0.05), spit the time series in two and try to detect
changes there.

2 Fit an ARMA model to the yearly sunhours of Chemnitz
robustly, try also conventional fits of order (1,0),(0,1) an (1,1).
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B1

> logreturns <- diff(log(SAP[,2]))
> test1 <- huber_cusum(logreturns,fun="HLm")
> test1$p.value
> test1$cp.location
> test2a <- huber_cusum(logreturns[1:2008],fun="HLm")
> test2b <- huber_cusum(logreturns[2009:4984],fun="HLm")
> test2a$p.value
> test2b$p.value
> median(logreturns[1:2008])-median(logreturns[2009:4984])

difference is around 0.001!
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Exercises

1 Try to predict the number of covid cases in Austria for the next
days.
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B2

> armarobM <- armarob(sunhours[,2],arorder=3,maorder=3,
aic=TRUE,aicpenalty=function(p) return(p*log(length(sunhours[,2]))))

> arma10 <- arma(sunhours[,2],c(1,0))
> arma01 <- arma(sunhours[,2],c(0,1))
> arma11 <- arma(sunhours[,2],c(1,1))

only robust ARMA model [AR(1)] and MA(1) are reasonable

model µ π θ

robust 1603 0.51 0
non robust AR(1) 1197 0.26
non robust ARMA(1,1) 1196 0.78 -0.58
non robust MA(1) 1611 0 0.23

Parameter estimations
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B2

0 10 20 30 40 50 60

−
40

0
0

40
0

Residuals over time

Time

R
es

id
ua

ls

Model analysis

Robust time series analysis with R 17/21



B2
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C

> load("Covid.Rdata")
> covidtimes <- ts(Covid[,5],freq=7)
> robModel <- robets(covidtimes)
> predict(robModel)
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Data sources:

https://open.data.dwd.de

https://finance.yahoo.com

https://covid19-dashboard.ages.at

https://www.lanuv.nrw.de
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