Robust time series analysis with R

Alexander Diirre

ECARES - European Center for Advanced Research in Economics and Statistics
Université Libre de Bruxelles

Wien, 20th September 2021

UNIVERSITE
HCARES it
DE BRUXELLES

Robust time series analysis with R /



Exercises A

@ Calculate the ACF of the stock prices of SAP (SAP2.Rdata)
robustly and by the empirical ACF. consider the raw prices and
the log returns defined by ()?t)tzgw,, defined by
X = log(X:) — log(X:-1)).

@ Determine the frequency of the guitar string (guitar2.Rdata)!
(Which string is played and is it tuned correctly?)

© Smooth the NO2 values robustly and non robustly. Decide for a
reasonable period length (and specify it by the freq argument
in the ts-object)

Note: install robts (after installing dependencies: robustbase, rrcov,
SpatialNP, ICSNP, sscor, quantreg, ltsa) by:
install.packages("robts", repos="http://R-Forge.R-project.org")

Robust time series analysis with R 2/21



load("SAP2.Rdata")

raw <- SAP[,2]

logreturn <- diff(log(SAP[,2]))
acf (raw)

acf (logreturn)

acfrob(raw)

acfrob(logreturn)

V V V V V Vv V

Robust time series analysis with R 3/21



Empirical raw Empirical log-return
- ©
[ee] w
S ] S
b ] 6 ~
< 3 < o 1l ... Ll | |
i B B B
°© T T T T T [ T T T T T T T T
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Lag Lag
Series raw
o | o |
o o
3] ] 3) ]
2 3 < 3
o 7] Llofdd LLL ] ][] _| o ]
e (— —T T °

Empirical ACFs in the forst row, robust ACFs in the second row

Robust time series anal



> spectrumg <- spectrumrob(guitar[,2])
> index <- which.max(spectrumg$spec)
> spectrumg$freq[index]*8000

the frequency is 119Hz which is a little to high for an Astring

Series: X
pgramrob
3
E
> ()
= —
[8]
2 _
F o
?
. T T T T T
0.0 0.1 0.2 0.3 0.4 0.5
frequency

bandwidth = 0.299

Robust time series analysis with R 5/21



>load ("NO2Krefeld.Rdata")

>KrefeldN02 <- ts(Krefeld[,2],freq=7)
>etsresult <- ets(KrefeldN02)
>robetsresult <- robets(KrefeldN02)
>plot(etsresult)

>plot(robetsresult)

Robust time series analysis with R 6/21



Decomposition by ETS(M,N,M) method

|

season levelobserved
1.1 50 2000 200
| I |

0.7

0 10 20 30 40 50

Time

Non-robust smoothing

Robust time series analysis with R 7/21



Decomposition by ROBETS(A,N,A) method

|

season levelobserved
-10 0 120 50 O 200
| I | L1111l

0 10 20 30 40 50

Time

Robust smoothing

Robust time series analysis with R 8/21



e
- —— non-robust
o - — — robust
©
<
> _ = _
x © T M
- I
o _| 1l T 1 | T
i " |I || || I |
S Tl
T T T T T T T T T T T T
0 10 20 30 40 50 0 2 4 6 8 10
t h

AR(1) with 7 = 0.9 and one outlier (left) and estimated ACF (right)

Robust time series an is with R



1.0

—— non-robust
o - — — robust
© ]
o
> _ = _
x © T e
o
o | il I| 1 “ I ||
' o | T o
Tl
T T T T T T T T T T T T
0 10 20 30 40 50 0 2 4 6 8 10
t h

AR(1) with 7 = 0.9 and one outlier (left) and estimated ACF (right)

Robust time series analysis with R



Exercises

@ Detect changes in the location and scale of the log returns of
the SAP stock prices. If you can detect a change (significance
level 0.05), spit the time series in two and try to detect
changes there.

@ Fit an ARMA model to the yearly sunhours of Chemnitz
robustly, try also conventional fits of order (1,0),(0,1) an (1,1).

Robust time series analysis with R 10/21



logreturns <- diff(log(SAP[,2]))

testl <- huber_cusum(logreturns,fun="HLm")

test1$p.value

testl$cp.location

test2a <- huber_cusum(logreturns[1:2008] ,fun="HLm")
test2b <- huber_cusum(logreturns[2009:4984] ,fun="HLm")
test2al$p.value

test2b$p.value
median(logreturns[1:2008])-median(logreturns[2009:4984])

V VV V V V V V.V

difference is around 0.001!

Robust time series analysis with R 11/21



Log returns of SAP stock prices

log return
0.0

-
I I I I

2005 2010 2015 2020
time

Estimated location function

Robust time series analysis with R 12/21



Exercises

© Try to predict the number of covid cases in Austria for the next
days.

Robust time series analysis with R 13/21



> armarobM <- armarob(sunhours[,2],arorder=3,maorder=3,
aic=TRUE,aicpenalty=function(p) return(p*log(length (sunh

> armalQ0 <- arma(sunhours[,2],c(1,0))

> arma0Ol <- arma(sunhours[,2],c(0,1))

> armall <- arma(sunhours[,2],c(1,1))

only robust ARMA model [AR(1)] and MA(1) are reasonable

model ‘ 7 T 0
robust 1603 0.51 0
non robust AR(1) 1197 0.26

non robust ARMA(1,1) | 1196 0.78 -0.58
non robust MA(1) 1611 0  0.23

Parameter estimations

Robust time series analysis with R 14/21



Values of robust AIC criterion aic values

™
@
'E N
o
<
=
o
T T T T ol
0 1 2 3
AR order

Model analysis

Robust time series analysis with R



Robust ACF of the residuals

ACF
2

Lag

Model analysis

Robust time series analysis with R 16/21



Residuals over time

400
|

Residuals

-400 O

Time

Model analysis

Robust time series analysis with R 17/21



‘
N

Normal Q—-Q Plot

400

-400 O

Normal QQ plot of the residuals

Theoretical Quantiles

Model analysis

Robust time series analysis with R 18/21



> load("Covid.Rdata")

> covidtimes <- ts(Covidl[,5],freq=7)
> robModel <- robets(covidtimes)

> predict(robModel)

Robust time series analysis with R 19/21



Decomposition by ROBETS(A,N,A) method

6000
[

season levelobserved

?

-1500 10000 4000 O

0 20 40 60 80

Time

Robustly smoothed covid data

Robust time series analysis with R 20/21



Data sources:

@ https://open.data.dwd.de
@ https://finance.yahoo.com
@ https://covidl9-dashboard.ages.at

@ https://www.lanuv.nrw.de

Robust time series analysis with R 21/21


https://open.data.dwd.de
https://finance.yahoo.com
https://covid19-dashboard.ages.at
https://www.lanuv.nrw.de

	anm0: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


