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Exercises A

@ Calculate the ACF of the stock prices of SAP (SAP2.Rdata)
robustly and by the empirical ACF. consider the raw prices and
the log returns defined by ()?t)tzgw,, defined by
X = log(X:) — log(X:-1)).

@ Determine the frequency of the guitar string (guitar2.Rdata)!
(Which string is played and is it tuned correctly?)

© Smooth the NO2 values robustly and non robustly. Decide for a
reasonable period length (and specify it by the freq argument
in the ts-object)

Note: install robts (after installing dependencies: robustbase, rrcov,
SpatialNP, ICSNP, sscor, quantreg, ltsa) by:
install.packages("robts", repos="http://R-Forge.R-project.org")
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load("SAP2.Rdata")

raw <- SAP[,2]

logreturn <- diff(log(SAP[,2]))
acf (raw)

acf (logreturn)

acfrob(raw)

acfrob(logreturn)
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Empirical ACFs in the forst row, robust ACFs in the second row
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> spectrumg <- spectrumrob(guitar[,2])
> index <- which.max(spectrumg$spec)
> spectrumg$freq[index]*8000

the frequency is 119Hz which is a little to high for an Astring
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>load ("NO2Krefeld.Rdata")

>KrefeldN02 <- ts(Krefeld[,2],freq=7)
>etsresult <- ets(KrefeldN02)
>robetsresult <- robets(KrefeldN02)
>plot(etsresult)

>plot(robetsresult)
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Decomposition by ETS(M,N,M) method
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Decomposition by ROBETS(A,N,A) method
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AR(1) with 7 = 0.9 and one outlier (left) and estimated ACF (right)
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Exercises

@ Detect changes in the location and scale of the log returns of
the SAP stock prices. If you can detect a change (significance
level 0.05), spit the time series in two and try to detect
changes there.

@ Fit an ARMA model to the yearly sunhours of Chemnitz
robustly, try also conventional fits of order (1,0),(0,1) an (1,1).
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logreturns <- diff(log(SAP[,2]))

testl <- huber_cusum(logreturns,fun="HLm")

test1$p.value

testl$cp.location

test2a <- huber_cusum(logreturns[1:2008] ,fun="HLm")
test2b <- huber_cusum(logreturns[2009:4984] ,fun="HLm")
test2al$p.value

test2b$p.value
median(logreturns[1:2008])-median(logreturns[2009:4984])
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difference is around 0.001!
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Log returns of SAP stock prices
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Exercises

© Try to predict the number of covid cases in Austria for the next
days.
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> armarobM <- armarob(sunhours[,2],arorder=3,maorder=3,
aic=TRUE,aicpenalty=function(p) return(p*log(length (sunh

> armalQ0 <- arma(sunhours[,2],c(1,0))

> arma0Ol <- arma(sunhours[,2],c(0,1))

> armall <- arma(sunhours[,2],c(1,1))

only robust ARMA model [AR(1)] and MA(1) are reasonable

model ‘ 7 T 0
robust 1603 0.51 0
non robust AR(1) 1197 0.26

non robust ARMA(1,1) | 1196 0.78 -0.58
non robust MA(1) 1611 0  0.23

Parameter estimations
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Values of robust AIC criterion aic values
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Robust ACF of the residuals
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Residuals over time
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> load("Covid.Rdata")

> covidtimes <- ts(Covidl[,5],freq=7)
> robModel <- robets(covidtimes)

> predict(robModel)
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Decomposition by ROBETS(A,N,A) method
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Data sources:

@ https://open.data.dwd.de
@ https://finance.yahoo.com
@ https://covidl9-dashboard.ages.at

@ https://www.lanuv.nrw.de
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