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R packages for robust time series analysis

Package Content
npcp change-point analysis
robcp change-point analysis
robets forcasting
robfilter time series filter
robustarima parametric modelling
RobKF model based filtering
RobPer periodogram estimation
robts basic time series analysis

Robust time series packages in R
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Basic descriptive statistics
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Autocorrelation function

Let (Xt)t∈N0 be a stationary time series

Theoretical ACF
If E(X 2

0 ) <∞ define γ : N0 → [−1, 1] by

ρ(h) = Cor(X0,Xh) = [E(Xh)− µ][E(X0)− µ]
Var(X0)

where µ = E(X0)

Empirical ACF

ρ̂(h) =
∑n−h

i=1 [Xi − X ][Xi+h − X ]∑n
i=1[Xi − X ]2
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Autocorrelation function

Let (Xt)t∈N0 be a stationary time series

Definition ACF
If E(X 2

0 ) <∞ define ρ : N0 → [−1, 1] by

ρ(h) = Cor(X0,Xh) = [E(Xh)− µ][E(X0)− µ]
Var(X0)

where µ = E(X0)

stats
> acf(x)
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Typical ACF shapes

Process Line chart ACF

White noise
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Typical ACF shapes II

Process Line chart acf

Periodicity
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Sensitivity of ACF
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AR(1) with π = 0.9 and one outlier (left) and estimated ACF (right)

Robust time series analysis with R Descriptive analysis 7/54



Sensitivity of ACF

AR(1) with π = 0.9 and one outlier (left) and estimated ACF (right)
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Robust alternatives to ACF
based on variances (Ma and Genton, 2000)

robts
> acfrob(x,approach="GK")

based on robustly filtered timeseries (Maronna et al., 2006)

robts
> acfrob(x,approach="filter")

based on multivariate correlation matrices (Dürre et al., 2015)

robts
> acfrob(x,approach="multi")

based on sign and ranks (Mottonen et al., 1999)

robts
> acfrob(x,approach="rank")
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ACF based on variances (Ma and Genton, 2000)

Based on the identity

ρ(h) = Var(X1 + X1+h)− Var(X1 − X1+h)
Var(X1 + X1+h) + Var(X1 − X1+h)

Now you can use any (robust) variance estimator!

robts
> acfrob(x)

uses variance approach with Qn since its is fast and robust in most
circumstances
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Sensitivity of ACF II
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Sensitivity of ACF II

AR(1) with parameter π = 0.9 and one outlier (left) and estimated ACF
[non-robust - black; robust - red] (right)
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Spectrum

Let E(X 2
0 ) <∞ and

∑∞
i=1 |ρ(h)| <∞, define S : [0, 1

2 ]→ R+

Spectrum

S(f ) = Var(X0)
∞∑
−∞

ρ(k)e−2πikf = Var(X0)
[

1 +
∞∑

k=1
cos(2πfk)ρ(k)

]

Estimation

Ŝ(f ) = 1
T |Z (f )|2 with Z (f ) =

T∑
i=1

X̃te−2πift

where X̃t = (Xt − X )d(t/n) and d : [0, 1]→ [0, 1] is a taper
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Spectrum

Let E(X 2
0 ) <∞ and

∑∞
i=1 |ρ(h)| <∞, define S : [0, 1

2 ]→ R+

Definition

S(f ) = Var(X0)
∞∑
−∞

ρ(k)e−2πikf = Var(X0)
[

1 +
∞∑

k=1
cos(2πfk)ρ(k)

]

stats
> spectrum(x)
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Typical Spectrum shapes

Process Line chart Spectrum

White noise
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Typical spectrum shapes II

Process Line chart Spectrum

Periodicity
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Robust alternatives to empirical spectrum

AR fit + Periodogram of residuals (Maronna et al., 2006)

robts
> spectrumrob(x,method="pgram")

Fouriertransform of robust acf (Spangl, 2008)

robts
> spectrumrob(x,method="acf")

Fitting periodic functions by robust regression (Thieler et al.,
2013)

RobPer
> n <- length(x)
> freq <- seq(from=1/n,to=0.5,by=1/n)
> RobPer(cbind(1:n,x),weighting=FALSE,periods

=1/freq,regression="S", model="sine")
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Robust periodogram based on AR fit

robts
> spectrumrob(x)

gives smoothed periodogram! (alternatively: set bandwidth=0)
1 Fit an AR model
2 Compute periodogram of parametric model ŜAR(f )
3 Calculate residuals (ε̂i )i=1,...,n
4 Robustify residuals (ε̃i )i=1,...,n
5 Compute periodogram of (ε̃i )i=1,...,n : Ŝε(f )
6 Combine both estimations: Ŝ = ŜAR(f ) · Ŝε(f )
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Sensitivity of the Periodogram
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Sensitivity of the Periodogram

Time series consisting of a sine, white noise and one outlier (left) and
estimated spectrum [non-robust - black; robust - red] (right)
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Smoothing
Aim: separate
signal (low freq, comp.) from noise (high freq. comp.)
Easiest scenario: Xt = µ+ εt where (εt)t∈N is iid
⇒ st = µ is signal nt = εt is noise

Simple exponential smoothing
For a smoothing parameter α ∈ (0, 1) :

ŝt = ŝt−1 + α(Xt − ŝt−1) = α
∞∑

i=0
(1− α)iXt−i
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Smoothing
Aim: separate
signal (low freq, comp.) from noise (high freq. comp.)
Easiest scenario: Xt = µ+ εt where (εt)t∈N is iid
⇒ st = µ is signal nt = εt is noise

Simple exponential smoothing
For a smoothing parameter α ∈ (0, 1) :

ŝt = ŝt−1 + α(Xt − ŝt−1) = α
∞∑

i=0
(1− α)iXt−i
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More complex exponential smoothing
Simple exponential smoothing:

ŝt = ŝt−1 + α (Xt − ŝt−1)︸ ︷︷ ︸
ε̂t

corresponds to the state-space model:

Xt = st−1 + εt with st = st−1 + αεt

Estimate α with (conditional) likelihood assuming εt ∼ N(0, σ2).

Generalized state space models

Xt = h(st) + k(st)εt
st = f (st−1) + d(st−1)εt

where (εt)t∈Z is iid with ε0 ∼ N(0, 1)
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More complex Addative error models

Trend \ Season None Additive Multiplicative

None

Additive

Multiplicatice

Damped
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More complex Multiplicative error models

Trend \ Season None Additive Multiplicative

None

Additive

Multiplicatice

Damped
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Estimation of smoothing parameter / state space model

forecast
> ets(x)

chooses best model by (corrected) AIC criterion
periodicity is chosen by freq specified in ts object!

0
20

40

ob
se

rv
ed

0
10

20

le
ve

l

0.
0

1.
0

2.
0

sl
op

e

0.
5

1.
0

1.
5

2.
0

2 4 6 8 10 12

se
as

on

Time

Decomposition by ETS(M,A,M) method

Robust time series analysis with R Descriptive analysis 22/54



Sensitivity of exponential smoothing
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Sensitivity of exponential smoothing

Time series from an MMM-model with one outlier (left) and estimated
signal using ets (right)
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Robust alternatives to smoothing

Filter based on repeated median for models with trend and
jumps (Fried, 2004)

robfilter
> robust.filter(x,width=bandwidth)

Robust version of ets (Crevits and Croux, 2017)

robets
> robets(x)
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Package robets

robets
> robets(x)

1 Outlier cleaning based on state space model
2 Parameter estimation by optimization of robustified likelihood:

Robust scale instead of sum of squared residuals
3 Model selection by robustified AIC criterion
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Implemented Additive error models

Trend \ Season None Additive Multiplicative

None

Additive

Multiplicatice

Damped
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Implemented Multiplicative error models

Trend \ Season None Additive Multiplicative

None

Additive

Multiplicatice

Damped
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Sensitivity of smoothing
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Time series from an MMM-model with one outlier (left) and estimated
signal using ets [black] respectively robets [red] (right)
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Sensitivity of smoothing

Time series from an MMM-model with one outlier (left) and estimated
signal using ets [black] respectively robets [red] (right)
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Exercises A
1 Calculate the ACF of the stock prices of SAP (SAP2.Rdata)

robustly and by the empirical ACF. consider the raw prices and
the log returns defined by (X̃t)t=2,...,n defined by
X̃t = log(Xt)− log(Xt−1)).

2 Determine the frequency of the guitar string (guitar2.Rdata)!
(Which string is played and is it tuned correctly?)

3 Smooth the NO2 values (NO2Krefeld.Rdata) robustly and non
robustly. Decide for a reasonable period length (and specify it
by the freq argument in the ts-object)

4 additional: Investigate the influence of block outliers in the
estimation of the ACF. Start with a time series of iid random
variables and add an increasing value to 5 consecutive
observations.

Note: install robts (after installing dependencies: robustbase, rrcov,
SpatialNP, ICSNP, sscor, quantreg, ltsa) by:

install.packages("robts", repos="http://R-Forge.R-project.org")
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Modelling
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Searching for changes

Assume: (Xi )i∈N

Test for change in mean

H0 : E(X1) = . . . = E(Xn)

against

H1 : ∃k : E(Xk−1) 6= E(Xk)

Estimate also time of change

Robust time series analysis with R Robust Modelling 31/54



Example: change in location
Simulated example:

Xt ∼
{

N(0, 1) 1 ≤ t ≤ 40
N(−1, 1) 41 ≤ t ≤ 80
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Time series with jump in k = 41
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Time of change known
2 sample t-test:√

k(T − k)
T

(
X [1:40] − X [41:80]

σ̂

)
∼ N(0, 1)
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Time of change unknown
Series of two sample tests:

MT (t) = t(T − t)
T 3/2σ̂

(X [1:t] − X [(t+1:T )]) = 1√
T σ̂

( t∑
k=1

Xk −
t
T

T∑
k=1

Xk

)
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Time of change unknown
Series of two sample tests:

MT (t) = t(T − t)
T 3/2σ̂

(X [1:t] − X [(t+1:T )]) = 1√
T σ̂

( t∑
k=1

Xk −
t
T

T∑
k=1

Xk

)
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Cusum statistic with one outlier
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Cusum statistic with one outlier

Cusum trajectory in case of one outlier
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Robustification
Intuitive solution to bound the influence of one observation:
Transform values by a bounded function e.g:

ψH(x) =


x |x | ≤ k
−k x < −k
k x > k

−2 −1 0 1 2
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Possible ψ−function (left) and transformed time series (right)
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Robust cusum statistic with one outlier
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Robust cusum statistic with one outlier

Cusum trajectories in case of one outlier
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Resulting robust cusum statistic

ST = sup
x∈[0,1]

1√
T σ̂

∣∣∣∣∣
bTxc∑
i=1

ψ

(Xi − µ̂
v̂

)
− bTxc

T

T∑
i=1

ψ

(Xi − µ̂
v̂

) ∣∣∣∣∣
where

ψ : R→ R is bounded
µ̂ is a location estimator, e.g. median
v̂ is a scale estimator, e.g. MAD
σ̂2 estimator for long run variance
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R-functions

Non-robust Cusum-test
robcp
> cusumstat <- CUSUM(x)
> pKSdist(cusumstat)

Location based on Hodges Lehmann (Dehling et al., 2020) [not
to large n!]

robcp
> hl_test(x)

Huberized test for change in location respectively variance
(Dürre and Fried, 2019)

robcp
> huber_cusum(x,fun="HLm")
> huber_cusum(x,fun="HCm")
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Fitting ARMA-models

ARMA Model
for p, q ≥ 0 :

Xt = π1Xt−1 + . . .+ πpXt−p + εt + θ1εt−1 + . . .+ θqεt−q

where (εt)t∈Z is a sequence of iid random variables (often N(0, σ2))
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Fitting ARMA-models

ARMA-model
for p, q ≥ 0 :

Xt = π1Xt−1 + . . .+ πpXt−p + εt + θ1εt−1 + . . .+ θqεt−q

where (εt)t∈Z is a sequence of iid random variables (often N(0, σ2))
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Non-robust estimation

3 step procedure of Hannan and Rissanen (1982):
1 Fit AR model of large order p0 by Yule-Walker equations

(ρ̂→ π̂)
2 Estimate parameter by

σ̃2
p,q = inf 1

n

n∑
i=p0+max(p,q)

Xi −
p∑

j=1
πjXi−j −

q∑
j=1

θj ε̂i−j

2

where (ε̂i )n
i=p0 are estimated from the inital AR fit

3 Choose p, q by minimizing an aic criterion based on σ̃p,q
4 Update parameter estimations with new estimated residuals
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Robust filter, Masreliez (1975) and Maronna et al. (2006)

For given AR model with π1, . . . , πp calculate iteratively:
prediction X̂t based on filtered values Yt−1, . . .Yt−p

residual εt = Xt − X̂t

filtered value Yt = X̂t + ψ(εt)
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For given AR model with π1, . . . , πp calculate iteratively:
prediction X̂t based on filtered values Yt−1, . . .Yt−p

residual εt = Xt − X̂t

filtered value Yt = X̂t + ψ(εt)

−4

−4

−3

−3

−2

−2
−1

−1

1

1

2

2

3

3

4

4

−
4

−
2

0
2

4

●

Possible Ψ−function (left) and filtered time series (right)

Robust time series analysis with R Robust change point detection 41/54



Robust filter, Masreliez (1975) and Maronna et al. (2006)

For given AR model with π1, . . . , πp calculate iteratively:
prediction X̂t based on filtered values Yt−1, . . .Yt−p

residual εt = Xt − X̂t

filtered value Yt = X̂t + ψ(εt)

−4

−4

−3

−3

−2

−2
−1

−1

1

1

2

2

3

3

4

4

●

−
4

−
2

0
2

4

●

Possible Ψ−function (left) and filtered time series (right)

Robust time series analysis with R Robust change point detection 41/54



Robust filter, Masreliez (1975) and Maronna et al. (2006)

For given AR model with π1, . . . , πp calculate iteratively:
prediction X̂t based on filtered values Yt−1, . . .Yt−p

residual εt = Xt − X̂t

filtered value Yt = X̂t + ψ(εt)

−4

−4

−3

−3

−2

−2
−1

−1

1

1

2

2

3

3

4

4

●

−
4

−
2

0
2

4

●

●

Possible Ψ−function (left) and filtered time series (right)

Robust time series analysis with R Robust change point detection 42/54



Robust filter, Masreliez (1975) and Maronna et al. (2006)

For given AR model with π1, . . . , πp calculate iteratively:
prediction X̂t based on filtered values Yt−1, . . .Yt−p

residual εt = Xt − X̂t

filtered value Yt = X̂t + ψ(εt)

Possible Ψ−function (left) and filtered time series (right)
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Robust filter, Masreliez (1975) and Maronna et al. (2006)

Since AR model is unknown:
1 Minimize robust BIC with respect to AR parameter π1, . . . , πp0

to finit initial AR process

log(σ̂2
π1,...,πp0

(εp0 , . . . , εn)) + log(n)p
n

2 Estimate π and θ by robustified likelihood

σ̃2
p,q = inf σ̂2(ε̂p0+max p,q, . . . , ε̂n)

where ε̂i = Xi −
∑p

j=1 πjXi−j − . . .
∑q

j=1 θjεi−j

3 Choose p, q by robustified aic criterion based on σ̃2
p,q.
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R-functions
Classical ARMA estimation

tseries
> arma(x)

Robustified estimation of AR models
robts
> arrob(x)

Robustified estimation of ARMA models
robts
> armarob(x,arorder=maxp,maorder=maxq,aic=TRUE,

aicpenalty=function(p) return(p*log(length(x))))

robustified estimation of ARIMA models
robustarima
> dat <- data.frame(1:n,x)
> rob.arima(dat,x˜1,p=p,q=q)
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Sensitivity of ARMA estimation
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AR(1) with π = 0.8 and one outlier (left), parameters of non robustly
estimated ARMA (center) and parameters of robustly estimated ARMA
(right). Parameters of AR part in blue and parameters of MA part in red.
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Sensitivity of ARMA estimation

AR(1) with π = 0.8 and one outlier (left), parameters of non robustly
estimated ARMA (center) and parameters of robustly estimated ARMA
(right). Parameters of AR part in blue and parameters of MA part in red.
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Exercises

1 Detect changes in the location of the log returns of the SAP
stock prices. If you can detect a change (significance level 0.05),
split the time series in two and try to detect changes there.

2 Fit an ARMA model to the yearly sunhours of Chemnitz
robustly, try also conventional fits of order (1,0),(0,1) an (1,1).
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Forecasting
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Non-robust methods

Using the state space model of smoothing approach (?)

forcast
> modelfit <- ets(x)
> predict(modelfit,n.ahead=predtime)

Using the ARMA fit

stats
> armafit <- arima(x,c(p,0,q))
> predict(armafit,n.ahead=predtime)
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Robust methods

Using the state space model of smoothing approach (Crevits
and Croux, 2017)

robets
> modelfit <- robets(x)
> predict(modelfit,n.ahead=predtime)

Using the ARMA fit

stats
> armafit <- armarob(x,arorder=p,maorder=q,aic=TRUE)
> predict(armafit,n.ahead=predtime)
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Sensitivity of forecasting by smoothing
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Forecast of an AR(1) times series with parameter π = 0.9 with one outlier.
Non robust forcast with ets (black) and robust forcast with robets
(darkgreen).
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Sensitivity of forecasting by smoothing

Forecast of an AR(1) times series with parameter π = 0.9 with one outlier.
Non robust forecast with ets (black) and robust forcast with robets
(darkgreen).
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Exercises

1 Try to predict the number of covid cases in Austria for the next
days.
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