

Sparse Robust Regression and Model Selection

Andreas Alfons

ICORS Workshop, September 20, 2021

Erasmus University Rotterdam

Content

1 Motivation

- 2 LARS and lasso
- **3** Robust least angle regression
- **4** Sparse least trimmed squares (trimmed lasso)
- **5** Penalized S- and MM-estimator
- 6 Hands-on part with R
- **7** Discussion and conclusions

Motivation

E 2 a fung 3/38

Motivation

Many empirical applications typically have data with p > n or $p \gg n$

- Gene expression
- fMRI
- Chemometrics
- Financial or macroeconomic time series

Two common strategies for model selection:

- Add penalty on coefficient estimates to objective function

 —> Certain penalties allow for sparse model estimates
- Sequentially add variables according to their importance

Motivation

Many empirical applications typically have data with p > n or $p \gg n$

- Gene expression
- fMRI
- Chemometrics
- Financial or macroeconomic time series

Two common strategies for model selection:

- Add penalty on coefficient estimates to objective function
 → Certain penalties allow for sparse model estimates
- Sequentially add variables according to their importance

LARS and lasso

Eafurs 5/38

Least angle regression (LARS): Algorithm

Model selection algorithm based on forward selection approach (Efron et al., 2004)

- Start with most correlated predictor
- Move along equi-angular vector until a new predictor is equally correlated and add that predictor to the active set
- Update coefficients of active predictors along solution path

Least angle regression (LARS): Properties

- Simple formula for the step size when next predictor is added
- Solution path is piecewise linear
 - \longrightarrow Efficient computation
- Applicable to high-dimensional data by limiting the number of steps

LARS: piecewise linear solution path vs path length

^{9 / 38}

Least absolute shrinkage and selection operator (lasso)

Different parametrization than proposed by Tibshirani (1996):

$$\hat{oldsymbol{eta}}_{\mathsf{lasso}} = rgmin_{eta} \sum_{i=1}^n (y_i - \mathbf{x}_i'oldsymbol{eta})^2 + n\lambda \|oldsymbol{eta}\|_1$$

 \rightarrow Can be computed through LARS framework (Efron et al., 2004)

→ But modern implementations use a coordinate descent algorithm (Friedman et al., 2010) or an ADMM algorithm (Boyd et al., 2010)

Least absolute shrinkage and selection operator (lasso)

Different parametrization than proposed by Tibshirani (1996):

$$\hat{oldsymbol{eta}}_{\mathsf{lasso}} = rgmin_{eta} \sum_{i=1}^n (y_i - \mathbf{x}_i'oldsymbol{eta})^2 + n\lambda \|oldsymbol{eta}\|_1$$

- \rightarrow Can be computed through LARS framework (Efron et al., 2004)
- \rightarrow But modern implementations use a coordinate descent algorithm (Friedman et al., 2010) or an ADMM algorithm (Boyd et al., 2010)

Relationship between LARS and lasso

Modification of the LARS algorithm:

- If the coefficient of an active predictor reaches 0, drop that predictor from the active set
- Continue algorithm with reduced active set
- \longrightarrow Lasso solution path

 \longrightarrow If no coefficient changes signs, LARS solution path is identical to lasso solution path

Relationship between LARS and lasso

Modification of the LARS algorithm:

- If the coefficient of an active predictor reaches 0, drop that predictor from the active set
- Continue algorithm with reduced active set
- \longrightarrow Lasso solution path

 \longrightarrow If no coefficient changes signs, LARS solution path is identical to lasso solution path

LARS: piecewise linear solution path vs L_1 norm

Lasso: piecewise linear solution path vs L_1 norm

Robust least angle regression

Ezafurs 14/38

Robust least angle regression (RLARS)

Hybrid procedure (Khan et al., 2007):

- Sequence predictors based on robust correlations
- ② Fit robust regression models along the sequence

 \longrightarrow Applicable to high-dimensional data by limiting the number of steps

 \rightarrow Implemented in function rlars() of R package robustHD

Robust least angle regression (RLARS)

Hybrid procedure (Khan et al., 2007):

- Sequence predictors based on robust correlations
- ② Fit robust regression models along the sequence

- \longrightarrow Applicable to high-dimensional data by limiting the number of steps
- \longrightarrow Implemented in function <code>rlars()</code> of R package <code>robustHD</code>

Robust groupwise least angle regression (RGrpLARS)

Robust extension of LARS to groupwise variable selection (Alfons et al., 2016):

- **①** Sequence of predictor groups based on R^2 after initial data cleaning
- **2** Fit robust regression models along the sequence using original data

- → Applicable to high-dimensional data for some of the proposed data cleaning approaches
- \longrightarrow Implemented in function <code>rgrplars()</code> of R package <code>robustHD</code>

Robust groupwise least angle regression (RGrpLARS)

Robust extension of LARS to groupwise variable selection (Alfons et al., 2016):

- **①** Sequence of predictor groups based on R^2 after initial data cleaning
- 2 Fit robust regression models along the sequence using original data

- \longrightarrow Applicable to high-dimensional data for some of the proposed data cleaning approaches
- \rightarrow Implemented in function rgrplars() of R package robustHD

Sparse least trimmed squares (trimmed lasso)

Objective function:

$$\hat{\boldsymbol{eta}}_{\mathsf{sparseLTS}} = \arg\min_{\boldsymbol{eta}} \sum_{i=1}^{h} (\boldsymbol{r}^2(\boldsymbol{eta}))_{i:n} + h\lambda \|\boldsymbol{eta}\|_1$$

with

$$h \le n$$

$$\mathbf{r}^{2}(\beta) = (r_{1}^{2}, \dots, r_{n}^{2})'$$

$$(\mathbf{r}^{2}(\beta))_{1:n} \le \dots \le (\mathbf{r}^{2}(\beta))_{n:n}$$

squared residuals order statistics

Combining...

- Least trimmed squares regression for robustness (Rousseeuw and Van Driessen, 2006)
- Lasso for sparsity (Tibshirani, 1996)
- \longrightarrow C-step algorithm for computation
- \longrightarrow Reweighting step to increase efficiency

 \longrightarrow Details and theory in Alfons et al. (2013) and Öllerer et al. (2015)

Combining...

- Least trimmed squares regression for robustness (Rousseeuw and Van Driessen, 2006)
- Lasso for sparsity (Tibshirani, 1996)
- \longrightarrow C-step algorithm for computation
- \longrightarrow Reweighting step to increase efficiency

ightarrow Details and theory in Alfons et al. (2013) and Öllerer et al. (2015)

Combining...

- Least trimmed squares regression for robustness (Rousseeuw and Van Driessen, 2006)
- Lasso for sparsity (Tibshirani, 1996)
- \longrightarrow C-step algorithm for computation
- \longrightarrow Reweighting step to increase efficiency

 \longrightarrow Details and theory in Alfons et al. (2013) and Öllerer et al. (2015)

C-step

Objective function in terms of subset *H*:

$$Q(H,eta) = \sum_{i\in H} (y_i - \mathbf{x}_i'eta)^2 + h\lambda \|eta\|_1$$

Step k with current subset H_k :

- Obtain lasso solution $\hat{\beta}_{H_k} = \arg \min_{\beta} Q(H_k, \beta)$
- Compute squared residuals $\mathbf{r}_k^2 = (r_{k,1}^2, \dots, r_{k,n}^2)'$
- Construct H_{k+1} from observations with smallest squared residuals:

$$H_{k+1} = \left\{ i \in \{1, \dots, n\} : r_{k,i}^2 \in \{(r_k^2)_{j:n} : j = 1, \dots, h\} \right\}$$

C-step

Objective function in terms of subset *H*:

$$Q(H,eta) = \sum_{i\in H} (y_i - \mathbf{x}_i'eta)^2 + h\lambda \|eta\|_1$$

Step k with current subset H_k :

- Obtain lasso solution $\hat{\beta}_{H_k} = \arg \min_{\beta} Q(H_k, \beta)$
- Compute squared residuals $\mathbf{r}_k^2 = (r_{k,1}^2, \dots, r_{k,n}^2)'$
- Construct H_{k+1} from observations with smallest squared residuals:

$$H_{k+1} = \left\{ i \in \{1, \dots, n\} : r_{k,i}^2 \in \{(r_k^2)_{j:n} : j = 1, \dots, h\} \right\}$$

Basic C-step algorithm

- **1** Obtain m initial subsets of size h from elementary 3-subsets
- **2** For $j = 1, \ldots, m$ do C-steps until convergence
- 3 Return $\hat{\beta}_{\rm sparseLTS}$ corresponding to the subset with the lowest value of the objective function

- \rightarrow Improvements as in FAST-LTS algorithm
- \rightarrow Implemented in function sparseLTS() of R package robustHD

Basic C-step algorithm

- **1** Obtain m initial subsets of size h from elementary 3-subsets
- **2** For $j = 1, \ldots, m$ do C-steps until convergence
- **3** Return $\hat{\beta}_{sparseLTS}$ corresponding to the subset with the lowest value of the objective function

- \longrightarrow Improvements as in FAST-LTS algorithm
- \rightarrow Implemented in function sparseLTS() of R package robustHD

Reweighted estimator

Weights from outlier detection via raw estimator:

$$w_i = \begin{cases} 1 & \text{if } |(r_i - \hat{\mu}_{\mathsf{raw}}) / \hat{\sigma}_{\mathsf{raw}}| \le \Phi^{-1}(1 - \delta) \\ 0 & \text{if } |(r_i - \hat{\mu}_{\mathsf{raw}}) / \hat{\sigma}_{\mathsf{raw}}| > \Phi^{-1}(1 - \delta) \end{cases} \qquad i = 1, \dots, n$$

ightarrow Reweighted estimator given by weighted lasso fit

$$\hat{eta}_{\mathsf{reweighted}} = rgmin_{eta} \sum_{i=1}^n w_i (y_i - \mathbf{x}_i'eta)^2 + \lambda n_w \|eta\|_1$$

with

 $n_w = \sum_{i=1}^n w_i$ number of detected good data points

Reweighted estimator

Weights from outlier detection via raw estimator:

$$w_i = \begin{cases} 1 & \text{if } |(r_i - \hat{\mu}_{\mathsf{raw}}) / \hat{\sigma}_{\mathsf{raw}}| \leq \Phi^{-1}(1 - \delta) \\ 0 & \text{if } |(r_i - \hat{\mu}_{\mathsf{raw}}) / \hat{\sigma}_{\mathsf{raw}}| > \Phi^{-1}(1 - \delta) \end{cases} \qquad i = 1, \dots, n$$

 \longrightarrow Reweighted estimator given by weighted lasso fit

$$\hat{eta}_{\mathsf{reweighted}} = rgmin_{eta} \sum_{i=1}^n w_i (y_i - \mathbf{x}_i' eta)^2 + \lambda n_w \|eta\|_1$$

with

 $n_w = \sum_{i=1}^n w_i$ number of detected good data points

Breakdown point

Finite sample breakdown point (FBP):

$$\varepsilon^*(\hat{\boldsymbol{\beta}}; \boldsymbol{Z}) = \min\left\{\frac{m}{n} : \sup_{\boldsymbol{Z}} \|\hat{\boldsymbol{\beta}}(\boldsymbol{Z})\|_2 = \infty\right\}$$

with

 $m{Z} = (m{X}, m{y})$ original sample $m{\tilde{Z}}$ contaminated sample with m points replaced by arbitrary values

Breakdown point theorem

$$\hat{oldsymbol{eta}} = rgmin_{eta} \sum_{i=1}^h \left(oldsymbol{
ho}(oldsymbol{y} - oldsymbol{X}eta)
ight)_{i:n} + h\lambda \|oldsymbol{eta}\|_1$$

where

$$\begin{split} &h \leq n \\ &\rho(x) \quad \text{convex, symmetric, } \rho(0) = 0 \text{ and } \rho(x) > 0 \text{ for } x \neq 0 \\ &\rho(\mathbf{y} - \mathbf{X}\beta) := (\rho(y_1 - \mathbf{x}_1\beta), \dots, \rho(y_n - \mathbf{x}_n\beta))' \quad \text{losses} \\ &(\rho(\mathbf{y} - \mathbf{X}\beta)))_{1:n} \leq \dots \leq (\rho(\mathbf{y} - \mathbf{X}\beta))_{n:n} \quad \text{order statistics} \end{split}$$

 \longrightarrow Breakdown point of the estimator $\hat{\beta}$:

$$\varepsilon^*(\hat{oldsymbol{eta}};oldsymbol{Z})=rac{n-h+1}{n}$$

2afing 24/38

Breakdown point of selected estimators

Sparse LTS:

$$\varepsilon^*(\hat{eta}_{\text{sparseLTS}}; Z) = \frac{n-h+1}{n}$$

Lasso:
 $\varepsilon^*(\hat{eta}_{\text{lasso}}; Z) = \frac{1}{n}$

 \longrightarrow Note: Breakdown point does not depend on dimension p

Breakdown point of selected estimators

Sparse LTS:

$$\varepsilon^*(\hat{\beta}_{\text{sparseLTS}}; \mathbf{Z}) = \frac{n-h+1}{n}$$

Lasso:
 $\varepsilon^*(\hat{\beta}_{\text{lasso}}; \mathbf{Z}) = \frac{1}{n}$

 \longrightarrow Note: Breakdown point does not depend on dimension p

Questions

- For a small enough h (i.e., a large enough trimming proportion), the sparse LTS has a breakdown point larger than 50%.
 - \longrightarrow How is this possible?
 - \longrightarrow Does this make sense from the perspective of robust statistics?
- **②** The lasso is equivalent to the constrained optimization problem

$$\min_{eta} \sum_{i=1}^n (y_i - \mathbf{x}_i'eta)^2$$
 subject to $\|eta\|_1 \leq t$

We also have equivalence of the L_1 and L_2 norms.

 \longrightarrow How is it possible that the breakdown point of the lasso is 0%?

Penalized S- and MM-estimator

Ezafing 27/38

Objective function:

$$\hat{\boldsymbol{\beta}}_{\mathsf{PENSE}} = \arg\min_{\boldsymbol{\beta}} \hat{\sigma}^{2}(\boldsymbol{\beta}) + \lambda_{S} \left(\alpha \|\boldsymbol{\beta}\|_{1} + \frac{1-\alpha}{2} \|\boldsymbol{\beta}\|_{2}^{2} \right)$$

with $\frac{1}{n} \sum_{i=1}^{n} \rho \left(\frac{r_{i}(\boldsymbol{\beta})}{\hat{\sigma}(\boldsymbol{\beta})} \right) = b$

where

$$egin{aligned} r_i(eta) &= y_i - \mathbf{x}_i'eta & ext{residuals} \ b &= \mathbb{E}_Z[
ho(Z)] & ext{with } Z \sim \mathcal{N}(0,1) & ext{consistency parameter} \end{aligned}$$

Combining...

- S-estimator for robustness (Salibian-Barrera and Yohai, 2006)
- Elastic net for regularization and sparsity (Friedman et al., 2005)
- \longrightarrow Iteratively reweighted elastic net (IRWEN) algorithm based on initial estimator for computation
- \longrightarrow Implemented in function pense() of R package pense
- \longrightarrow Robust, but not efficient
- \longrightarrow Details and theory in Cohen Freue et al. (2019)

Combining...

- S-estimator for robustness (Salibian-Barrera and Yohai, 2006)
- Elastic net for regularization and sparsity (Friedman et al., 2005)
- \longrightarrow Iteratively reweighted elastic net (IRWEN) algorithm based on initial estimator for computation
- \longrightarrow Implemented in function <code>pense()</code> of R package <code>pense</code>
- \longrightarrow Robust, but not efficient
- \longrightarrow Details and theory in Cohen Freue et al. (2019)

Combining...

- S-estimator for robustness (Salibian-Barrera and Yohai, 2006)
- Elastic net for regularization and sparsity (Friedman et al., 2005)
- \longrightarrow Iteratively reweighted elastic net (IRWEN) algorithm based on initial estimator for computation
- \longrightarrow Implemented in function <code>pense()</code> of R package <code>pense</code>
- \longrightarrow Robust, but not efficient
- \longrightarrow Details and theory in Cohen Freue et al. (2019)

PENSE refined via M-estimator (PENSEM)

 \rightarrow To increase efficiency, Cohen Freue et al. (2019) propose a penalized elastic net M-estimator, using the initial scale estimate from PENSE

 \longrightarrow However, this creates other issues and this approach will not be discussed further

PENSE refined via M-estimator (PENSEM)

 \rightarrow To increase efficiency, Cohen Freue et al. (2019) propose a penalized elastic net M-estimator, using the initial scale estimate from PENSE

 \longrightarrow However, this creates other issues and this approach will not be discussed further

Hands-on part with R

Ezafing 31/38

R packages and script

We will use:

 \longrightarrow R packages <code>robustHD</code> (version 0.7.0!) and <code>pense</code>

R> install.packages(c("robustHD", "pense"))

 \longrightarrow Run the commands in your own R session along with me

NCI-60 cancer cell panel

- Data on 60 human cancer cell lines
- Available from http://discover.nci.nih.gov/cellminer/
- Protein expressions based on 162 antibodies
- Gene expression data with p = 22283

 \rightarrow *n* = 59: one observation with all gene expressions missing

 \rightarrow Use protein expression with largest MAD as response variable

NCI-60 cancer cell panel

- Data on 60 human cancer cell lines
- Available from http://discover.nci.nih.gov/cellminer/
- Protein expressions based on 162 antibodies
- Gene expression data with p = 22283

 \rightarrow *n* = 59: one observation with all gene expressions missing

- \longrightarrow Use protein expression with largest MAD as response variable
- \longrightarrow Candidate predictors: d = 100 most correlated gene expressions

Discussion and conclusions

Ezafins 34/38

Some issues to look out for

• Residual scale is typically underestimated in high-dimensions

 \longrightarrow Outlier detection via standardized residuals is prone to false positives

• BIC for regularization parameter selection can be unstable for values of λ close to 0 due to exact fit situations

 $\longrightarrow\,$ Cross-validation is preferred, but computationally expensive

Conclusions

 \longrightarrow Robust regression in high dimensions remains a challenging problem

 \longrightarrow R packages <code>robustHD</code> and <code>pense</code> provide promising functionality

 \rightarrow A trimmed version of the elastic net (Kurnaz et al., 2017) is available in R package enetLTS, also for logistic regression

References I

- Alfons, A., Croux, C., and Gelper, S. (2013). Sparse least trimmed squares regression for analyzing high-dimensional large data sets. <u>The Annals of Applied Statistics</u>, 7(1):226–248.
- Alfons, A., Croux, C., and Gelper, S. (2016). Robust groupwise least angle regression. Computational Statistics & Data Analysis, 93:421–435.
- Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2010). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1–122.
- Cohen Freue, G., Kepplinger, D., Salibian-Barrera, M., and Smucler, E. (2019). Robust elastic net estimators for variable selection and identification of proteomic biomarkers. <u>The Annals of Applied Statistics</u>, 13(4):2065–2090.
- Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32(2):407–499.
- Friedman, J., Hastie, T., and Tibshirani, R. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, 67(2):301–320.

References II

- Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22.
- Khan, J., Van Aelst, S., and Zamar, R. (2007). Robust linear model selection based on least angle regression. Journal of the American Statistical Association, 102(480):1289–1299.
- Kurnaz, F., Hoffmann, I., and Filzmoser, P. (2017). Robust and sparse estimation methods for high dimensional linear and logistic regression. <u>Chemometrics and</u> Intelligent Laboratory Systems, 172:211–222.
- Öllerer, V., Croux, C., and Alfons, A. (2015). The influence function of penalized regression estimators. <u>Statistics: A Journal of Theoretical and Applied Statistics</u>, 49(4):741–765.
- Rousseeuw, P. and Van Driessen, K. (2006). Computing LTS regression for large data sets. Data Mining and Knowledge Discovery, 12(1):29–45.
- Salibian-Barrera, M. and Yohai, V. (2006). A fast algorithm for S-regression estimates. Journal of Computational and Graphical Statistics, 15(2):414–427.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58(1):267–288.