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Motivation

Many empirical applications typically have data with p > n or p � n

• Gene expression
• fMRI
• Chemometrics
• Financial or macroeconomic time series

Two common strategies for model selection:
• Add penalty on coefficent estimates to objective function
−→ Certain penalties allow for sparse model estimates

• Sequentially add variables according to their importance
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LARS and lasso
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Least angle regression (LARS): Idea
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ŷ(0) ŷ(1)

y(1)

6 / 38



Least angle regression (LARS): Idea

●

●

● ●

x1

x2

x3 x3
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Least angle regression (LARS): Algorithm

Model selection algorithm based on forward selection approach
(Efron et al., 2004)

• Start with most correlated predictor

• Move along equi-angular vector until a new predictor is equally
correlated and add that predictor to the active set

• Update coefficients of active predictors along solution path

7 / 38



Least angle regression (LARS): Properties

• Simple formula for the step size when next predictor is added

• Solution path is piecewise linear
−→ Efficient computation

• Applicable to high-dimensional data by limiting the number of steps
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LARS: piecewise linear solution path vs path length
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Least absolute shrinkage and selection operator (lasso)

Different parametrization than proposed by Tibshirani (1996):

β̂lasso = arg min
β

n∑
i=1

(yi − x′iβ)2 + nλ‖β‖1

−→ Can be computed through LARS framework (Efron et al., 2004)

−→ But modern implementations use a coordinate descent algorithm
(Friedman et al., 2010) or an ADMM algorithm (Boyd et al., 2010)
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Relationship between LARS and lasso

Modification of the LARS algorithm:
• If the coefficient of an active predictor reaches 0, drop that predictor
from the active set
• Continue algorithm with reduced active set

−→ Lasso solution path

−→ If no coefficient changes signs, LARS solution path is identical to
lasso solution path

11 / 38



Relationship between LARS and lasso

Modification of the LARS algorithm:
• If the coefficient of an active predictor reaches 0, drop that predictor
from the active set
• Continue algorithm with reduced active set

−→ Lasso solution path

−→ If no coefficient changes signs, LARS solution path is identical to
lasso solution path

11 / 38



LARS: piecewise linear solution path vs L1 norm

5
2

1
8

6
9

0 2 3 4 6 7 9 10

0.0 0.2 0.4 0.6 0.8 1.0

−
50

0
0

50
0

|beta|/max|beta|

S
ta

nd
ar

di
ze

d 
co

ef
fic

ie
nt

s

12 / 38



Lasso: piecewise linear solution path vs L1 norm
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Robust least angle regression
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Robust least angle regression (RLARS)

Hybrid procedure (Khan et al., 2007):

1 Sequence predictors based on robust correlations

2 Fit robust regression models along the sequence

−→ Applicable to high-dimensional data by limiting the number of steps

−→ Implemented in function rlars() of R package robustHD
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Robust groupwise least angle regression
(RGrpLARS)

Robust extension of LARS to groupwise variable selection
(Alfons et al., 2016):

1 Sequence of predictor groups based on R2 after initial data cleaning

2 Fit robust regression models along the sequence using original data

−→ Applicable to high-dimensional data for some of the proposed data
cleaning approaches

−→ Implemented in function rgrplars() of R package robustHD
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Sparse least trimmed squares (trimmed lasso)
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Sparse least trimmed squares regression

Objective function:

β̂sparseLTS = arg min
β

h∑
i=1

(r2(β))i :n + hλ‖β‖1

with
h ≤ n
r2(β) = (r2

1 , . . . , r2
n )′ squared residuals

(r2(β))1:n ≤ . . . ≤ (r2(β))n:n order statistics
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Sparse least trimmed squares regression

Combining...
• Least trimmed squares regression for robustness
(Rousseeuw and Van Driessen, 2006)
• Lasso for sparsity (Tibshirani, 1996)

−→ C-step algorithm for computation

−→ Reweighting step to increase efficiency

−→ Details and theory in Alfons et al. (2013) and Öllerer et al. (2015)
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C-step

Objective function in terms of subset H:

Q(H,β) =
∑
i∈H

(yi − x′iβ)2 + hλ‖β‖1

Step k with current subset Hk :
• Obtain lasso solution β̂Hk = arg minβ Q(Hk ,β)
• Compute squared residuals r2

k = (r2
k,1, . . . , r2

k,n)′

• Construct Hk+1 from observations with smallest squared residuals:

Hk+1 =
{

i ∈ {1, . . . , n} : r2
k,i ∈ {(r2

k)j:n : j = 1, . . . , h}
}
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Basic C-step algorithm

1 Obtain m initial subsets of size h from elementary 3-subsets

2 For j = 1, . . . ,m do C-steps until convergence

3 Return β̂sparseLTS corresponding to the subset with the lowest value
of the objective function

−→ Improvements as in FAST-LTS algorithm

−→ Implemented in function sparseLTS() of R package robustHD
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Reweighted estimator

Weights from outlier detection via raw estimator:

wi =
{

1 if |(ri − µ̂raw)/σ̂raw| ≤ Φ−1(1− δ)
0 if |(ri − µ̂raw)/σ̂raw| > Φ−1(1− δ) i = 1, . . . , n

−→ Reweighted estimator given by weighted lasso fit

β̂reweighted = arg min
β

n∑
i=1

wi (yi − x′iβ)2 + λnw‖β‖1

with
nw =

∑n
i=1 wi number of detected good data points
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Breakdown point

Finite sample breakdown point (FBP):

ε∗(β̂; Z) = min
{

m
n : sup

Z̃
‖β̂(Z̃)‖2 =∞

}

with
Z = (X , y) original sample
Z̃ contaminated sample with m points replaced by

arbitrary values
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Breakdown point theorem

β̂ = arg min
β

h∑
i=1

(ρ(y − Xβ))i :n + hλ‖β‖1

where
h ≤ n
ρ(x) convex, symmetric, ρ(0) = 0 and ρ(x) > 0 for x 6= 0
ρ(y − Xβ) := (ρ(y1 − x1β), . . . , ρ(yn − xnβ))′ losses
(ρ(y − Xβ)))1:n ≤ . . . ≤ (ρ(y − Xβ))n:n order statistics

−→ Breakdown point of the estimator β̂:

ε∗(β̂; Z) = n − h + 1
n
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Breakdown point of selected estimators

Sparse LTS:
ε∗(β̂sparseLTS; Z) = n − h + 1

n

Lasso:
ε∗(β̂lasso; Z) = 1

n

−→ Note: Breakdown point does not depend on dimension p
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Questions

1 For a small enough h (i.e., a large enough trimming proportion),
the sparse LTS has a breakdown point larger than 50%.
−→ How is this possible?
−→ Does this make sense from the perspective of robust statistics?

2 The lasso is equivalent to the constrained optimization problem

min
β

n∑
i=1

(yi − x′iβ)2 subject to ‖β‖1 ≤ t

We also have equivalence of the L1 and L2 norms.
−→ How is it possible that the breakdown point of the lasso is 0%?
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Penalized S- and MM-estimator
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Penalized Elastic Net S-Estimator (PENSE)

Objective function:

β̂PENSE = arg min
β

σ̂2(β) + λS

(
α‖β‖1 + 1− α

2 ‖β‖22
)

with 1
n

n∑
i=1

ρ

( ri (β)
σ̂(β)

)
= b

where
ri (β) = yi − x′iβ residuals
b = EZ [ρ(Z )] with Z ∼ N (0, 1) consistency parameter
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Penalized Elastic Net S-Estimator (PENSE)

Combining...
• S-estimator for robustness (Salibian-Barrera and Yohai, 2006)
• Elastic net for regularization and sparsity (Friedman et al., 2005)

−→ Iteratively reweighted elastic net (IRWEN) algorithm based on initial
estimator for computation

−→ Implemented in function pense() of R package pense

−→ Robust, but not efficient

−→ Details and theory in Cohen Freue et al. (2019)
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PENSE refined via M-estimator (PENSEM)

−→ To increase efficiency, Cohen Freue et al. (2019) propose a penalized
elastic net M-estimator, using the initial scale estimate from PENSE

−→ However, this creates other issues and this approach will not be
discussed further
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Hands-on part with R
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R packages and script

We will use:

−→ R packages robustHD (version 0.7.0!) and pense

R> install.packages(c("robustHD", "pense"))

−→ R script ICORS2021_workshop_script.R available from
https://personal.eur.nl/alfons/ICORS2021.html

−→ Run the commands in your own R session along with me

32 / 38
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NCI-60 cancer cell panel

• Data on 60 human cancer cell lines
• Available from http://discover.nci.nih.gov/cellminer/

• Protein expressions based on 162 antibodies
• Gene expression data with p = 22 283
−→ n = 59: one observation with all gene expressions missing

−→ Use protein expression with largest MAD as response variable
−→ Candidate predictors: d = 100 most correlated gene expressions
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Discussion and conclusions
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Some issues to look out for

• Residual scale is typically underestimated in high-dimensions
−→ Outlier detection via standardized residuals is prone to false positives

• BIC for regularization parameter selection can be unstable for values
of λ close to 0 due to exact fit situations
−→ Cross-validation is preferred, but computationally expensive
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Conclusions

−→ Robust regression in high dimensions remains a challenging problem

−→ R packages robustHD and pense provide promising functionality

−→ A trimmed version of the elastic net (Kurnaz et al., 2017) is
available in R package enetLTS, also for logistic regression
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