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Motivation

Many empirical applications typically have data with p > nor p > n

Gene expression
fMRI

Chemometrics

Financial or macroeconomic time series
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Motivation

Many empirical applications typically have data with p > nor p > n

® Gene expression
e fMRI
® Chemometrics

® Financial or macroeconomic time series

Two common strategies for model selection:

® Add penalty on coefficent estimates to objective function
—— Certain penalties allow for sparse model estimates

® Sequentially add variables according to their importance
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Least angle regression (LARS): Idea
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Least angle regression (LARS): Algorithm

Model selection algorithm based on forward selection approach
(Efron et al., 2004)

® Start with most correlated predictor

® Move along equi-angular vector until a new predictor is equally
correlated and add that predictor to the active set

e Update coefficients of active predictors along solution path
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Least angle regression (LARS): Properties

® Simple formula for the step size when next predictor is added

® Solution path is piecewise linear

— Efficient computation

® Applicable to high-dimensional data by limiting the number of steps
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LARS: piecewise linear solution path vs path length
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Least absolute shrinkage and selection operator (lasso)

Different parametrization than proposed by Tibshirani (1996):

IBIasso - argﬁmlnz + n)‘H/BHl

i=1
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Least absolute shrinkage and selection operator (lasso)

Different parametrization than proposed by Tibshirani (1996):

IB|BSSO = arg mmz + n)‘H/BHl

— Can be computed through LARS framework (Efron et al., 2004)

— But modern implementations use a coordinate descent algorithm
(Friedman et al., 2010) or an ADMM algorithm (Boyd et al., 2010)
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Relationship between LARS and lasso

Modification of the LARS algorithm:

® |f the coefficient of an active predictor reaches 0, drop that predictor
from the active set

e Continue algorithm with reduced active set

— Lasso solution path
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Relationship between LARS and lasso

Modification of the LARS algorithm:

® |f the coefficient of an active predictor reaches 0, drop that predictor
from the active set

e Continue algorithm with reduced active set

— Lasso solution path

— If no coefficient changes signs, LARS solution path is identical to
lasso solution path
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LARS:

Standardized coefficients

piecewise linear solution path vs [; norm
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Lasso:

Standardized coefficients

piecewise linear solution path vs [; norm
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Robust least angle regression
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Robust least angle regression (RLARS)

Hybrid procedure (Khan et al., 2007):
@ Sequence predictors based on robust correlations

@ Fit robust regression models along the sequence
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Robust least angle regression (RLARS)

Hybrid procedure (Khan et al., 2007):
@ Sequence predictors based on robust correlations

@ Fit robust regression models along the sequence

— Applicable to high-dimensional data by limiting the number of steps

— Implemented in function rlars() of R package robustHD
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Robust groupwise least angle regression
(RGrpLARS)

Robust extension of LARS to groupwise variable selection
(Alfons et al., 2016):

@ Sequence of predictor groups based on R? after initial data cleaning

@® Fit robust regression models along the sequence using original data
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Robust groupwise least angle regression
(RGrpLARS)

Robust extension of LARS to groupwise variable selection
(Alfons et al., 2016):

@ Sequence of predictor groups based on R? after initial data cleaning

® Fit robust regression models along the sequence using original data

— Applicable to high-dimensional data for some of the proposed data
cleaning approaches

— Implemented in function rgrplars() of R package robustHD
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Sparse least trimmed squares (trimmed lasso)
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Sparse least trimmed squares regression

Objective function:

h
BsparseLTS = argﬁmin Z(r2(ﬂ))i:n + h)‘HBHl
i=1

with
h<n
r2(B) = (r2,...,r2y squared residuals
(r’(B))1.n < ... < (r?(B))nn order statistics
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Sparse least trimmed squares regression

Combining...

® | east trimmed squares regression for robustness
(Rousseeuw and Van Driessen, 2006)

® Lasso for sparsity (Tibshirani, 1996)
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Sparse least trimmed squares regression

Combining...

® | east trimmed squares regression for robustness
(Rousseeuw and Van Driessen, 2006)

® Lasso for sparsity (Tibshirani, 1996)

— C-step algorithm for computation

— Reweighting step to increase efficiency
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Sparse least trimmed squares regression

Combining...

® | east trimmed squares regression for robustness
(Rousseeuw and Van Driessen, 2006)

® Lasso for sparsity (Tibshirani, 1996)

— C-step algorithm for computation

— Reweighting step to increase efficiency

— Details and theory in Alfons et al. (2013) and Ollerer et al. (2015)
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C-step

Objective function in terms of subset H:

Q(H,8) = >_(vi —xiB)* + hA|Bllx

ieH

et

20/38



C-step

Objective function in terms of subset H:

Q(H,8) = >_(vi —xiB)* + hA|Bllx

ieH

Step k with current subset H,:
® Obtain lasso solution BHk = arg ming Q(Hx, B)
e Compute squared residuals r2 = (r,f,l, . r,in)’
® Construct Hy,1 from observations with smallest squared residuals:

Hon={ie{t,....n}: 2, € {(F)jn:j=1,..., h}}
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Basic C-step algorithm

@ Obtain m initial subsets of size h from elementary 3-subsets
® Forj=1,...,mdo C-steps until convergence

© Return BsparseLTS corresponding to the subset with the lowest value
of the objective function
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Basic C-step algorithm

@ Obtain m initial subsets of size h from elementary 3-subsets
® Forj=1,...,mdo C-steps until convergence

© Return BsparseLTS corresponding to the subset with the lowest value
of the objective function

— Improvements as in FAST-LTS algorithm

— Implemented in function sparseLTS() of R package robustHD
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Reweighted estimator

Weights from outlier detection via raw estimator:

Wi — 1 if|(ri*ﬂraw)/5’raw| S(D_l(]_—é) i=1
i — 0 if!(ri—ﬂraw)/ﬁrawl>¢’1(1—5) = 1,...
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Reweighted estimator

Weights from outlier detection via raw estimator:

0 if [(r; — firaw)/Fraw| > ©71(1 = 6)

— Reweighted estimator given by weighted lasso fit
R n
IBreweighted = argﬁmin Z Wi(yi - X;B)Z + )\an,BHl
i=1

with
nw =Y., w number of detected good data points
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Breakdown point

Finite sample breakdown point (FBP):
* (0 . m a5
£*(B; Z) = min {n :sup 1B(2)]2 = oo}
z

with

Z = (X,y) original sample
contaminated sample with m points replaced by
arbitrary values

N
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Breakdown point theorem

B =arg mlnz ply — XB)),., + h\||B|1

where

>
IN

n

p(x)  convex, symmetric, p(0) = 0 and p(x) > 0 for x # 0
ply — XB) = (p(y1 —x18),...,p(yn —xnB)) losses

(p(ly —XB)))1n < ... < (ply — XB)),.n order statistics

— Breakdown point of the estimator B:

PPN n—h+1
(B z) = =
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Breakdown point of selected estimators

Sparse LTS:
R n—h+1

8*(/6sparseLTS; Z) = n

Lasso:

s 1
€ (ﬂlasso; Z) = ;
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Breakdown point of selected estimators

Sparse LTS:
R n—h+1

8*(/6sparseLTS; Z) = n

Lasso:

s 1
€ (ﬂlasso; Z) = ;

— Note: Breakdown point does not depend on dimension p
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Questions

@ For a small enough h (i.e., a large enough trimming proportion)
the sparse LTS has a breakdown point larger than 50%

— How is this possible?

—— Does this make sense from the perspective of robust statistics?
® The lasso is equivalent to the constrained optimization problem
m|n Z —x/3)? subject to 18Il <t

We also have equivalence of the L; and Ly norms

— How is it possible that the breakdown point of the lasso is 0%
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Penalized S- and MM-estimator
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Penalized Elastic Net S-Estimator (PENSE)

Objective function:

A A 11—«
Bocnse = arg mind*(8) + As (alBlh + 5 1815

2
15010

i=1

where

ri(B) =yi— X8 residuals
b =Ez[p(Z)] with Z ~ N(0,1) consistency parameter
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Penalized Elastic Net S-Estimator (PENSE)

Combining...
® S-estimator for robustness (Salibian-Barrera and Yohai, 2006)

e Elastic net for regularization and sparsity (Friedman et al., 2005)
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Penalized Elastic Net S-Estimator (PENSE)

Combining...
® S-estimator for robustness (Salibian-Barrera and Yohai, 2006)

e Elastic net for regularization and sparsity (Friedman et al., 2005)

— lteratively reweighted elastic net (IRWEN) algorithm based on initial
estimator for computation

— Implemented in function pense() of R package pense
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Penalized Elastic Net S-Estimator (PENSE)

Combining...

Ll

S-estimator for robustness (Salibian-Barrera and Yohai, 2006)

Elastic net for regularization and sparsity (Friedman et al., 2005)

Iteratively reweighted elastic net (IRWEN) algorithm based on initial
estimator for computation

Implemented in function pense () of R package pense

Robust, but not efficient
Details and theory in Cohen Freue et al. (2019)
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PENSE refined via M-estimator (PENSEM)

— To increase efficiency, Cohen Freue et al. (2019) propose a penalized
elastic net M-estimator, using the initial scale estimate from PENSE
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PENSE refined via M-estimator (PENSEM)

— To increase efficiency, Cohen Freue et al. (2019) propose a penalized
elastic net M-estimator, using the initial scale estimate from PENSE

— However, this creates other issues and this approach will not be
discussed further
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R packages and script

We will use:

— R packages robustHD (version 0.7.0!) and pense

R> install.packages(c("robustHD", "pense"))

— R script ICORS2021_workshop_script.R available from
https://personal.eur.nl/alfons/ICORS2021.html

— Run the commands in your own R session along with me
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https://personal.eur.nl/alfons/ICORS2021.html

NCI-60 cancer cell panel

Data on 60 human cancer cell lines

Available from http://discover.nci.nih.gov/cellminer/

® Protein expressions based on 162 antibodies
® Gene expression data with p = 22283

— n = 59: one observation with all gene expressions missing
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NCI-60 cancer cell panel

L

Data on 60 human cancer cell lines
Available from http://discover.nci.nih.gov/cellminer/

Protein expressions based on 162 antibodies
Gene expression data with p = 22283

— n = 59: one observation with all gene expressions missing

Use protein expression with largest MAD as response variable

Candidate predictors: d = 100 most correlated gene expressions
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Discussion and conclusions
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34/38



Some issues to look out for

® Residual scale is typically underestimated in high-dimensions

— Qutlier detection via standardized residuals is prone to false positives

® BIC for regularization parameter selection can be unstable for values
of A close to 0 due to exact fit situations

— Cross-validation is preferred, but computationally expensive
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Conclusions

— Robust regression in high dimensions remains a challenging problem
— R packages robustHD and pense provide promising functionality

— A trimmed version of the elastic net (Kurnaz et al., 2017) is
available in R package enetLTS, also for logistic regression
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